Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Genet Eng Rev ; : 1-18, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36971224

RESUMO

Bone marrow mesenchymal stem cells (BMECs)-derived exosomes (MSC-Exo) can improve acute myocardial infarction (AMI). Astragaloside IV (AS-IV) has also been reported to have cardioprotective pharmacological effects. However, it is not entirely clear whether AS-IV can improve AMI by inducing MSC-Exo. BMSCs and MSC-Exo were isolated and identified, and we also established the AMI rat model and the OGD/R model with H9c2 cells. After MSC-Exo or AS-IV-mediated MSC-Exo treatment, cell angiogenesis, migration, and apoptosis were evaluated by tube formation, wound healing, and TUNEL staining. The cardiac function of the rats was measured by echocardiography. The pathological changes and collagen deposition in rats were also assessed with Masson and Sirius red staining. The levels of α-SMA, CD31 and inflammatory factors were determined by immunohistochemistry and enzyme-linked immunosorbent assay (ELISA). In vitro, AS-IV-mediated MSC-Exo can significantly enhance the angiogenesis and migration of H9c2 cells induced by OGD/R, and significantly reduce their apoptosis. In vivo, AS-IV-mediated MSC-Exo can improve the cardiac function of rats, and attenuate pathological damage and collagen deposition in AMI model rats. In addition, AS-IV-mediated MSC-Exo can also promote angiogenesis and reduce inflammatory factors in rats with AMI. AS-IV-stimulated MSC-Exo can improve myocardial contractile function, myocardial fibrosis and angiogenesis, reduce inflammatory factors and induce apoptosis in rats after AMI.

2.
Ann Transl Med ; 10(11): 635, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35813340

RESUMO

Background: Patients with rheumatoid arthritis (RA) may be more susceptible to infection by coronavirus disease-19 (COVID-19) due to immune system dysfunction. However, there are still insufficient treatment strategies for patients with RA and COVID-19. Since Jingulian is a traditional Chinese medicine (TCM) with anti-viral and immune regulatory functions, our study aims to explore the detailed mechanisms of Jingulian in treating patients with RA and COVID-19. Methods: All the components of Jingulian were retrieved from pharmacology databases. Then, a series of network pharmacology-based analyses and molecular docking were used to understand the molecular functions, core targets, related pathways, and potential therapeutic targets of Jingulian in patients with RA/COVID-19. Results: A total of 93 genes were identified according to the disease-compound-target network. We investigated that the main targets, signaling pathways, and biological functions of Jingulian in RA and COVID-19. Our results indicated that Jingulian may treat patients with RA/COVID-19 through immune processes and viral processes. Moreover, the results of molecular docking revealed that tormentic acid was one of the top compounds of Jingulian, which had high affinity with Janus kinase 1 (JAK1), signal transducer and activator of transcription 3 (STAT3), and epidermal growth factor receptor (EGFR) in patients with RA/COVID-19. Furthermore, 5 core targets of Jingulian were also identified, including JAK1, Janus kinase 2 (JAK2), STAT3, lymphocyte specific protein tyrosine kinase (LCK), and EGFR. Conclusions: Tormentic acid in Jingulian may regulate JAK1, STAT3, and EGFR, and might play a critical role in RA/COVID-19.

3.
Dis Markers ; 2022: 5967131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35419117

RESUMO

Ischemic stroke (IS) has imposed significant threat to both middle-aged and elderly people worldwide. Acute myocardial infarction (AMI) is a rare but serious complication following IS, which can further increase patient disability and mortality rates. With the development of intravenous thrombolysis and endovascular treatment, the prognosis of IS has been greatly improved. However, the pathogenesis of IS complicated with AMI is still unclear. To fill this gap, this work uses bioinformatic analysis, where IS and AMI datasets were combined for differential gene analysis, and then, a ROC prediction model for target gene analysis was constructed. It is found that OSM gene has the highest prediction accuracy (AUC = 0.793), followed by IL6ST, IL6, JAK1, IL6R, and JAK2 genes. Joint prediction model showed higher accuracy in predicting the outcome of control and case (AUC = 0.918). The etiology of ischemic stroke and acute myocardial infarction is complicated. Their cooccurring pathological mechanisms and the conversion between the two diseases could not be explained by a single gene. Therefore, the joint prediction model in this work can provide a better prediction accuracy for research purpose.


Assuntos
AVC Isquêmico , Infarto do Miocárdio , Acidente Vascular Cerebral , Idoso , Biologia Computacional , Humanos , AVC Isquêmico/genética , Pessoa de Meia-Idade , Infarto do Miocárdio/complicações , Prognóstico , Fatores de Risco , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/genética
4.
Mol Med ; 27(1): 72, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238204

RESUMO

BACKGROUND: Although miR-125b plays a crucial role in many human cancers. However, its function in heart failure (HF) remains unclear. Our study aimed to investigate its involvement in heart failure. METHODS: In this study, the mouse HF model was successfully constructed through transverse aortic constriction (TAC) operation. Changes in mRNA and protein levels in isolated myocytes and heart tissues were examined using qRT-PCR, Western blot and Immunohistochemical staining and immunofluorescent staining. Changes in cardiac functions were examined using ultrasound. Interactions between miR-125b and BAK1 was analyzed using the luciferase reporter assay. Cardiomyocyte apoptosis was evaluated using the TUNEL staining. RESULTS: We found that miR-125b expression was significantly downregulated in myocardial tissues of HF mice. Moreover, miR-125b upregulation in HF mice injected with agomir-125b efficiently ameliorated cardiac function. Further, miR-125b upregulation significantly decreased the protein levels of apoptosis-related makers c-caspase 3 and Bax, while increased Bcl-2 expression. In addition, BAK1 was identified as a direct target of miR-125b. As expected, BAK1 overexpression observably reversed the effect of agomir-125b on cardiac function and on the expression of apoptosis-related makers in the heart tissues of HF mice. CONCLUSIONS: Taken together, miR-125b overexpression efficiently attenuated cardiac function injury of HF mice by targeting BAK1 through inhibiting cardiomyocyte apoptosis, suggesting that miR-125b/BAK1 axis might be a potential target for the diagnosis or treatment of HF.


Assuntos
Apoptose/genética , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Insuficiência Cardíaca/diagnóstico , Testes de Função Cardíaca , Masculino , Camundongos , Interferência de RNA , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...