Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 568, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718476

RESUMO

Endoplasmic reticulum (ER) is characterized by interconnected tubules and sheets. Neuronal ER adopts specific morphology in axons, dendrites and soma. Here we study mechanisms underlying ER morphogenesis in a C. elegans sensory neuron PVD. In PVD soma and dendrite branch points, ER tubules connect to form networks. ER tubules fill primary dendrites but only extend to some but not all dendritic branches. We find that the Atlastin-1 ortholog, atln-1 is required for neuronal ER morphology. In atln-1 mutants with impaired GTPase activity, ER networks in soma and dendrite branch points are reduced and replaced by tubules, and ER tubules retracted from high-order dendritic branches, causing destabilized microtubule in these branches. The abnormal ER morphology likely causes defects in mitochondria fission at dendritic branch points. Mutant alleles of Atlastin-1 found in Hereditary Spastic Paraplegia (HSP) patients show similar ER phenotypes, suggesting that neuronal ER impairment contributes to HSP disease pathogenesis.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Dendritos/metabolismo , Retículo Endoplasmático/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Dendritos/genética , Retículo Endoplasmático/genética , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microtúbulos/metabolismo , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo
2.
Dev Biol ; 413(1): 60-9, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26968353

RESUMO

Sensory dendrite morphogenesis is directed by intrinsic and extrinsic factors. The extracellular environment plays instructive roles in patterning dendrite growth and branching. However, the molecular mechanism is not well understood. In Caenorhabditis elegans, the proprioceptive neuron PVD forms highly branched sensory dendrites adjacent to the hypodermis. We report that receptor tyrosine phosphatase CLR-1 functions in the hypodermis to pattern the PVD dendritic branches. Mutations in clr-1 lead to loss of quaternary branches, reduced secondary branches and increased ectopic branches. CLR-1 is necessary for the dendrite extension but not for the initial filopodia formation. Its role is dependent on the intracellular phosphatase domain but not the extracellular adhesion domain, indicating that it functions through dephosphorylating downstream factors but not through direct adhesion with neurons. Genetic analysis reveals that clr-1 also functions in parallel with SAX-7/DMA-1 pathway to control PVD primary dendrite development. We provide evidence of a new environmental factor for PVD dendrite morphogenesis.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Dendritos/metabolismo , Proteínas Tirosina Fosfatases Semelhantes a Receptores/fisiologia , Pele/embriologia , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Derme/embriologia , Proteínas de Fluorescência Verde/metabolismo , Mutação , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurônios/metabolismo , Fosforilação , Estrutura Terciária de Proteína , Pseudópodes/metabolismo , Células Receptoras Sensoriais/metabolismo , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...