Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(23): e2309535, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38193268

RESUMO

Photodynamic therapy (PDT) has emerged as a promising non-invasive approach for cancer treatment. Enhancing its efficacy and understanding its absorption-induced attenuation are significant while the solutions are limited, particularly for the latter. In this study, a rod-shaped liquid plasticine (LP), comprised of a tumor cell solution encased by a nanoparticle monolayer, is used to serve as a powerful minireactor for addressing these issues. The channel structure, openness, and cuttability of the LP reactor are exploited for providing benefits to PDT. The resulting PDT efficacy is several times higher than those from droplet reactors with common spherical shapes. The attenuation law, which is fundamental in PDT yet poorly understood due to the lack of experimental approaches, is preliminarily uncovered here from the perspective of in vitro experiments by using the LP's cuttability, affording quantitative understanding on this difficult subject. These findings provide insights into the widely-concerned topics in PDT, and highlight the great potential of an LP reactor in offering innovation power for the biochemical and biomedical arenas.


Assuntos
Neoplasias , Fotoquimioterapia , Fotoquimioterapia/métodos , Humanos , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Nanopartículas/química
2.
Angew Chem Int Ed Engl ; 63(3): e202316190, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38009958

RESUMO

With the increasing demands of X-ray detection and medical diagnosis, organic scintillators with intense and tunable X-ray excited emission have been becoming important. To guarantee the X-ray absorption, heavy atoms were widely added in reported organic scintillators, which led to emission quenching. In this work, we propose a new strategy to realize organic scintillators through the host-guest doping strategy. Then the X-ray absorption centers (host) and emission centers (guest) are separated. Under X-ray excitation, these materials displayed intense and readily tunable emissions ranging from green (520 nm) to near infrared (NIR) regions (682 nm). Besides, the relationship between the X-ray absorption and spatial arrangement of the heavy atoms in the host matrix was also revealed. The potential application of these wide-range color tunable organic host-guest scintillators in X-ray imaging were demonstrated. This work provides a new feasible strategy for constructing high-performance organic scintillators with tunable luminescence properties.

3.
Adv Mater ; 35(48): e2307198, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37821358

RESUMO

Synthesizing monodisperse afterglow microparticles (MPs) is crucial for creating photonic crystal (PC) platforms with multiple optical states for optoelectronics. However, achieving high uniformity in both size and morphology is challenging for inorganic afterglow MPs using conventional methods. In this contribution, a novel approach for the synthesis of carbon dot (CD)-doped SiO2 MPs with tunable afterglow properties and size distributions is reported. These mechanism studies suggest that the pseudomorphic transformation of SiO2 MPs enables CD doping, providing a hydrogen bond-enriched environment for triplet state stabilization, which generates green afterglow while retaining the uniformity in size and morphology of the parent SiO2 MPs. Furthermore, the utility of CD-doped SiO2 MPs in the fabrication of rationally designed PC patterns is shown using a combined consecutive dip-coating and laser-assisted etching strategy. The pattern displays multiple optical responses under different lighting conditions, including angle-dependent structural colors and blue luminescence under daylight and upon 365-nm irradiation, respectively, as well as time-dependent green afterglow after ceasing UV excitation. The findings pave the way for further controlling the dynamics of spontaneous emissions by PCs to enable complicated optical states for advanced photonics.

4.
Light Sci Appl ; 12(1): 155, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37357223

RESUMO

The advancement of contemporary X-ray imaging heavily depends on discovering scintillators that possess high sensitivity, robust stability, low toxicity, and a uniform size distribution. Despite significant progress in this field, the discovery of a material that satisfies all of these criteria remains a challenge. In this study, we report the synthesis of monodisperse copper(I)-iodide cluster microcubes as a new class of X-ray scintillators. The as-prepared microcubes exhibit remarkable sensitivity to X-rays and exceptional stability under moisture and X-ray exposure. The uniform size distribution and high scintillation performance of the copper(I)-iodide cluster microcubes make them suitable for the fabrication of large-area, flexible scintillating films for X-ray imaging applications in both static and dynamic settings.

5.
Chem Soc Rev ; 52(3): 942-972, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36514947

RESUMO

Mitochondria are inextricably linked to the development of diseases and cell metabolism disorders. Super-resolution imaging (SRI) is crucial in enhancing our understanding of mitochondrial ultrafine structures and functions. In addition to high-precision instruments, super-resolution microscopy relies heavily on fluorescent materials with unique photophysical properties. Small-molecule fluorogenic probes (SMFPs) have excellent properties that make them ideal for mitochondrial SRI. This paper summarizes recent advances in the field of SMFPs, with a focus on the chemical and spectroscopic properties required for mitochondrial SRI. Finally, we discuss future challenges in this field, including the design principles of SMFPs and nanoscopic techniques.


Assuntos
Microscopia , Mitocôndrias , Mitocôndrias/metabolismo , Microscopia/métodos , Corantes , Corantes Fluorescentes/química
6.
Adv Sci (Weinh) ; 10(5): e2205526, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36461749

RESUMO

The search for color-tunable, efficient, and robust scintillators plays a vital role in the development of modern X-ray radiography. The radioluminescence tuning of copper iodide cluster scintillators in the entire visible region by bandgap engineering is herein reported. The bandgap engineering benefits from the fact that the conduction band minimum and valence band maximum of copper iodide cluster crystals are contributed by atomic orbitals from the inorganic core and organic ligand components, respectively. In addition to high scintillation performance, the as-prepared crystalline copper iodide cluster solids exhibit remarkable resistance toward both moisture and X-ray irradiation. These features allow copper iodide cluster scintillators to show particular attractiveness for low-dose X-ray radiography with a detection limit of 55 nGy s-1 , a value ≈100 times lower than a standard dosage for X-ray examinations. The results suggest that optimizing both inorganic core and organic ligand for the building blocks of metal halide cluster crystals may provide new opportunities for a new generation of high-performance scintillation materials.

7.
Nat Commun ; 13(1): 3995, 2022 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-35810179

RESUMO

Scintillators that exhibit X-ray-excited luminescence have great potential in radiation detection, X-ray imaging, radiotherapy, and non-destructive testing. However, most reported scintillators are limited to inorganic or organic crystal materials, which have some obstacles in repeatability and processability. Here we present a facile strategy to achieve the X-ray-excited organic phosphorescent scintillation from amorphous copolymers through the copolymerization of the bromine-substituted chromophores and acrylic acid. These polymeric scintillators exhibit efficient X-ray responsibility and decent phosphorescent quantum yield up to 51.4% under ambient conditions. The universality of the design principle was further confirmed by a series of copolymers with multi-color radioluminescence ranging from green to orange-red. Moreover, we demonstrated their potential application in X-ray radiography. This finding not only outlines a feasible principle to develop X-ray responsive phosphorescent polymers, but also expands the potential applications of polymer materials with phosphorescence features.


Assuntos
Luminescência , Polímeros , Polimerização , Polímeros/química , Radiografia , Raios X
8.
ACS Appl Mater Interfaces ; 14(8): 10947-10954, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35175048

RESUMO

Dual-mode luminescent nanomaterials have outstanding performance in biosensing and multistage anticounterfeiting. Herein, we report the tuning of optical attributes of lanthanide-doped nanoparticles (NPs) via simultaneous binary cation exchange. We show that cation exchange of NaYF4:Yb/Er (18/2 mol %)@NaLnF4 (Ln = Y and Gd) NPs with a combination of Ce3+ and Tb3+ enables the resultant nanoparticles to exhibit both upconversion and downshifting emissions upon excitation at 980 and 254 nm, respectively. We find that in addition to introducing downshifting emission attributes, the use of Tb3+ ions allows conservation of the integrity of the parent core@shell NPs by decreasing the dissociation tendency caused by Ce3+ ions during the cation exchange. The upconversion color output can be tuned from green to red and blue by changing lanthanide combinations in the core NPs. This work not only provides an effective strategy for the optical tuning of lanthanide-doped NPs but also builds a platform for probing the difference in the reactivity nature of lanthanides.

9.
Angew Chem Int Ed Engl ; 60(36): 19648-19652, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34224644

RESUMO

D-amino acids (DAAs) are indispensable in regulating diverse metabolic pathways. Selective and sensitive detection of DAAs is crucial for understanding the complexity of metabolic processes and managing associated diseases. However, current DAA detection strategies mainly rely on bulky instrumentation or electrochemical probes, limiting their cellular and animal applications. Here we report an enzyme-coupled nanoprobe that can detect enantiospecific DAAs through synergistic energy transfer. This nanoprobe offers near-infrared upconversion capability, a wide dynamic detection range, and a detection limit of 2.2 µM, providing a versatile platform for in vivo noninvasive detection of DAAs with high enantioselectivity. These results potentially allow real-time monitoring of biomolecular handedness in living animals, as well as developing antipsychotic treatment strategies.

10.
Chem Soc Rev ; 50(3): 2074-2101, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33325927

RESUMO

The self-assembly of colloidal nanoparticles has made it possible to bridge the nanoscopic and macroscopic worlds and to make complex nanostructures. The nanoparticle-mediated assembly enables many potential applications, from biodetection and nanomedicine to optoelectronic devices. Properties of assembled materials are determined not only by the nature of nanoparticle building blocks, but also by spatial positions of nanoparticles within the assemblies. A deep understanding of nanoscale interactions between nanoparticles is a prerequisite to controlling nanoparticle arrangement during assembly. In this review, we present an overview of interparticle interactions governing their assembly in a liquid phase. Considerable attention is devoted to examples that illustrate nanoparticle assembly into ordered superstructures using different types of building blocks, including plasmonic nanoparticles, magnetic nanoparticles, lanthanide-doped nanophosphors, and quantum dots. We also cover the physicochemical properties of nanoparticle ensembles, especially those arising from particle coupling effects. We further discuss future research directions and challenges in controlling self-assembly at a level of precision that is most crucial to technology development.

11.
Research (Wash D C) ; 2021: 9892152, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35028585

RESUMO

X-ray imaging is a low-cost, powerful technology that has been extensively used in medical diagnosis and industrial nondestructive inspection. The ability of X-rays to penetrate through the body presents great advances for noninvasive imaging of its internal structure. In particular, the technological importance of X-ray imaging has led to the rapid development of high-performance X-ray detectors and the associated imaging applications. Here, we present an overview of the recent development of X-ray imaging-related technologies since the discovery of X-rays in the 1890s and discuss the fundamental mechanism of diverse X-ray imaging instruments, as well as their advantages and disadvantages on X-ray imaging performance. We also highlight various applications of advanced X-ray imaging in a diversity of fields. We further discuss future research directions and challenges in developing advanced next-generation materials that are crucial to the fabrication of flexible, low-dose, high-resolution X-ray imaging detectors.

12.
Research (Wash D C) ; 2021: 6098925, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38617379

RESUMO

The ability of carbon dots (CDs) to emit afterglow emission in addition to fluorescence in response to UV-to-visible excitation allows them to be a new class of luminescent materials. When compared with traditional organic or inorganic afterglow materials, CDs have a set of advantages, including small size, ease of synthesis, and absence of highly toxic metal ions. In addition, high dependence of their afterglow color output on temperature, excitation wavelength, and aggregation degrees adds remarkable flexibility in the creation of multimode luminescence of CDs without the need for changing their intrinsic attributes. These characteristics make CDs particularly attractive in the fields of sensing, anticounterfeiting, and data encryption. In this review, we first describe the general attributes of afterglow CDs and their fundamental afterglow mechanism. We then highlight recent strategic advances in the generation or activation of the afterglow luminescence of CDs. Considerable emphasis is placed on the summarization of their emergent afterglow properties in response to external stimulation. We further highlight the emerging applications of afterglow CDs on the basis of their unique optical features and present the key challenges needed to be addressed before the realization of their full practical utility.

13.
Angew Chem Int Ed Engl ; 59(47): 20988-20995, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32783295

RESUMO

The ability to incorporate functional metal ions (Mn+ ) into metal-organic coordination complexes adds remarkable flexibility in the synthesis of multifunctional organic-inorganic hybrid materials with tailorable electronic, optical, and magnetic properties. We report the cation-exchanged synthesis of a diverse range of hollow Mn+ -phytate (PA) micropolyhedra via the use of hollow Co2+ -PA polyhedral networks as templates at room temperature. The attributes of the incoming Mn+ , namely Lewis acidity and ionic radius, control the exchange of the parent Co2+ ions and the degree of morphological deformation of the resulting hollow micropolyhedra. New functions can be obtained for both completely and partially exchanged products, as supported by the observation of Ln3+ (Ln3+ =Tb3+ , Eu3+ , and Sm3+ ) luminescence from as-prepared hollow Ln3+ -PA micropolyhedra after surface modification with dipicolinic acid as an antenna. Moreover, Fe3+ - and Mn2+ -PA polyhedral complexes were employed as magnetic contrast agents.

14.
ACS Appl Mater Interfaces ; 12(27): 30905-30914, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32526140

RESUMO

We present that activation of CoMoO4-based microrod arrays in KOH (1.0 M, 2 h) allows us to significantly improve their electrochemical hydrogen evolution performance in phosphate buffer solution (1.0 M, pH = 7.1). The activation mechanism originates from the conversion of the surface layer of CoMoO4 to Co(OH)2 nanosheets, together with the release of Mo3O102- ions into the activation solution. Our experimental and calculated results suggest that the Co(OH)2 nanosheets on the surface of the CoMoO4-based microrod arrays show the ability to improve water molecule disassociation and stabilize the catalytic activity of the two-component catalysts by decreasing their overpotentials in the hydrogen evolution reaction. When extending this strategy to activate P-doped CoMoO4 with a low hydrogen absorption free energy, we report the synthesis of a new class of superior neutral electrochemical hydrogen evolution catalysts of P-doped CoMoO4-Co(OH)2 microrod arrays. We show that a low overpotential of about 30 mV (obtained from bulk electrolysis) is required to deliver a current density of 10 mA cm-2 in the neutral media. By making use of our catalyst and NiFe double hydroxide as cathodic and anodic electrodes, respectively, we fabricated a two-electrode electrolysis device for neutral overall water splitting. Our results showed a low cell voltage of 1.78 V (obtained from bulk electrolysis) that is needed for delivering a current density of about 10 mA cm-2 in the neutral electrolyte, even outperforming the state-of-the-art catalyst combination of Pt/C∥RuO2 in terms of catalytic activity and stability. These findings suggest that our strategy may be utilized as a facile but useful strategy toward the activation of molybdate catalysts to improve their HER performance in both basic and neutral media.

15.
Adv Mater ; 32(4): e1906437, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31777990

RESUMO

The identification of chemoselective oxidation process en route to fine chemicals and specialty chemicals is a long-standing pursuit in chemical synthesis. A vertically structured, cobalt single atom-intercalated molybdenum disulfide catalyst (Co1 -in-MoS2 ) is developed for the chemoselective transformation of sulfides to sulfone derivatives. The single-atom encapsulation alters the electron structure of catalyst owing to confinement effect and strong metal-substrate interaction, thus enhancing adsorption of sulfides and chemoselective oxidation at the edge sites of MoS2 to achieve excellent yields of up to 99% for 34 examples. The synthetic scopes can be extended to sulfide-bearing alkenes, alkynes, aldehydes, ketones, boronic esters, and amines derivatives as a toolbox for the synthesis of high-value, multifunctional sulfones and late-stage functionalization of pharmaceuticals, e.g., Tamiflu. The synthetic utility of cobalt single atom-intercalated MoS2 , together with its reusability, scalability, and simplified purification process, renders it promising for industrial productions.

16.
ACS Appl Mater Interfaces ; 11(33): 30146-30153, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31361956

RESUMO

Luminescent nanoparticles with dual-mode long-lived luminescence are of great importance for their attractive applications in biosensing, bioimaging, and data encoding. Herein, we report the realization of up- and downconversion emission of Mn2+ dopants in multilayer nanoparticles of NaGdF4:Yb/Tm@NaGdF4:Ce/Mn@NaYF4 upon excitation at 980 and 254 nm, respectively. The dual-mode emission of the Mn2+ dopants at 531 nm have a long-lived lifetime up to ∼30 ms as a result of the spin-forbidden optical transition of Mn2+ within the 3d5 configuration. After ceasing steady excitation at the two wavelengths, the long-lived feature of Mn2+ luminescence allows a longer persistent time than lanthanide emissions, thereby enabling the ease of data decoding by a cell phone camera under a burst mode. The long-lived green upconversion emission also permits the generation of a long green tail emission upon dynamic excitation at 980 nm. These attributes make the as-prepared Mn2+-doped multilayer nanoparticles particularly attractive for multilevel anticounterfeiting.

17.
ACS Appl Mater Interfaces ; 11(25): 22851-22857, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31198041

RESUMO

The ability to reversibly manipulate the surface nature of luminescent nanoparticles upon external stimulation enables the development of advanced optical probes for biological sensing and data encoding. Herein, we report the synthesis of a new class of smart carbon dots (CDs) via surface modification of amine-enriched CDs with CO2-responsive groups of amidine. We present that alternative CO2 and N2 bubbling can not only lead to a reversible phase transfer of the CDs between an organic phase and an aqueous phase but also give rise to a corresponding reversible luminescence change between blue and cyan-green. We attribute these observations to changes in both the surface chemistry and the emission states of the CDs triggered by the alternative CO2/N2 introduction. We also find a similar luminescence change of the CDs upon alternative exposure to a humid vapor of CO2 and a mixture of NH3 and N2 at room temperature, allowing them to be used as a new class of optical materials for optical encoding.

18.
Langmuir ; 35(3): 671-677, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30607962

RESUMO

The development of earth-abundant catalysts for efficient hydrolysis of ammonia borane is of great importance in the conversion and utilization of hydrogen energy. Here, we report the synthesis of SiO2-encompassed Co@N-doped porous carbon assemblies as a new type of recyclable catalyst for the purpose by calcination of zeolitic imidazolate framework-67@SiO2 microtubes at high temperatures under an N2 atmosphere. We find that the surface layer of SiO2 in the precursor microtubes is essential for the production of efficient catalysts by supplying an additional surface for Co nanoparticle dispersion in an effort to reduce their size. In addition, the SiO2 layer renders a highly ordered arrangement of Co@N-doped porous carbon within the catalysts, possibly allowing the ease of mass transfer of ammonia borane within the catalysts. The optimized catalysts obtained via calcination at 800 °C show a set of remarkable catalytic benefits, including a high hydrogen generation rate of 8.4 mol min-1 mol(Co)-1, a relatively low activation energy of 36.1 kJ mol-1, and a remarkable reusability (at least 10 times). Our results can provide new insight into the design and synthesis of highly ordered SiO2-supported catalysts for different reactions.

19.
Oncol Lett ; 15(5): 7817-7827, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29725473

RESUMO

Diallyl disulfide (DADS), a volatile component of garlic oil, has various biological properties, including antioxidant, antiangiogenic and anticancer effects. The present study aimed to explore novel targets of DADS that may slow or stop the progression of breast cancer. First, xenograft tumor models were created by subcutaneously injecting MCF-7 and MDA-MB-231 breast cancer cells into nude mice. Subsequently, western blot analysis was performed to investigate the expression of tristetraprolin (TTP), urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP-9) in the xenograft tumors, and cell cultures. Tablet cloning, Transwell and wound healing assays revealed that DADS treatment significantly inhibited the proliferation, invasion and migration of breast cancer cells. In addition, DADS treatment led to significant downregulation of uPA and MMP-9 protein expression, but significantly upregulated TTP expression in vivo and in vitro. Knocking down TTP expression using small interfering RNA reversed the aforementioned effects of DADS, which suggests TTP is a key target of DADS in inhibiting the progression of breast cancer.

20.
Nat Commun ; 8(1): 899, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-29026084

RESUMO

Optical characteristics of luminescent materials, such as emission profile and lifetime, play an important role in their applications in optical data storage, document security, diagnostics, and therapeutics. Lanthanide-doped upconversion nanoparticles are particularly suitable for such applications due to their inherent optical properties, including large anti-Stokes shift, distinguishable spectroscopic fingerprint, and long luminescence lifetime. However, conventional upconversion nanoparticles have a limited capacity for information storage or complexity to prevent counterfeiting. Here, we demonstrate that integration of long-lived Mn2+ upconversion emission and relatively short-lived lanthanide upconversion emission in a particulate platform allows the generation of binary temporal codes for efficient data encoding. Precise control of the particle's structure allows the excitation feasible both under 980 and 808 nm irradiation. We find that the as-prepared Mn2+-doped nanoparticles are especially useful for multilevel anti-counterfeiting with high-throughput rate of authentication and without the need for complex time-gated decoding instrumentation.Luminescent materials that are capable of binary temporal coding are desirable for multilevel anti-counterfeiting. Here, the authors engineer nanoparticles that produce binary color codes on different timescales by combining the long-lived luminescence of Mn2+ with the relatively short-lived emission of lanthanides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...