Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36840294

RESUMO

Hydrogen gas (H2) is an important molecular messenger in animal and plant cells and is involved in various aspects of plant processes, including root organogenesis induction, stress tolerance and postharvest senescence. This study investigated the effect of H2 fumigation on the quality of Lanzhou lily scales. The results indicated the H2 remarkably declined the color variation and browning degree in Lanzhou lily scales by suppressing the activity of phenylalanine ammonia-lyase (PAL), peroxidase (POD) and polyphenol oxidase (PPO). Moreover, H2 significantly alleviated the degradation of soluble proteins and soluble sugars in Lanzhou lily scales during postharvest storage, mitigating the decline in nutritional quality. This alleviating effect of H2 might be achieved by increasing the endogenous H2 concentration. Collectively, our data provide new insights into the postharvest quality reduction of Lanzhou lily scales mitigated by H2 fumigation.

2.
PeerJ ; 10: e12943, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186505

RESUMO

Serine hydroxymethyltransferase (SHMT) is one of the most important enzyme families in one-carbon metabolic pathway and photorespiration within plant cells. Recently studies reported the active roles of plant SHMTs in defending abiotic stresses. However, genome-scale analysis of SHMT in tomato is currently unknown. In this study, seven SHMT genes were identified in the tomato genome using a genome-wide search approach. In addition, their physicochemical properties, protein secondary structure, subcellular localization, gene structure, conserved motifs, phylogenetic and collinear relationships were analyzed. Our results demonstrated that tomato SHMT members were divided into two group and four subgroups, and they were conserved with the orthologs of other plants. Analysis of cis-acting elements showed that each of the SlSHMT genes contained different kinds of hormones and stress-related cis-acting elements in their promoter regions. Finally, qRT-PCR analysis indicated that SlSHMTs were expressed at different levels in different tissues, and they responded to UV, cold, heat, NaCl, H2O2, ABA and PEG treatments. These results provided definite evidence that SlSHMTs might involve in growth, development and stress responses in tomato, which laid a foundation for future functional studies of SlSHMTs.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Glicina Hidroximetiltransferase/genética , Filogenia , Peróxido de Hidrogênio , Família Multigênica/genética
3.
Photochem Photobiol ; 92(5): 651-7, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27499076

RESUMO

The synthesis of Zn-doped TiO2 nanoparticles by solgel method was investigated in this study, as well as its modification by H2 O2 . The catalyst was characterized by transmission electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller, UV-visible reflectance spectra and X-ray photoelectron spectroscopy (XPS). The results indicated that doping Zn into TiO2 nanoparticles could inhibit the transformation from anatase phase to rutile phase. Zn existed as the second valence oxidation state in the Zn-doped TiO2 . Zn-doped TiO2 that was synthesized by 5% Zn doping at 450°C exhibited the best photocatalytic activity. Then, the H2 O2 modification further enhanced the photocatalytic activity. Zn doping and H2 O2 modifying narrowed the band gap and efficiently increased the optical absorption in visible region. The optimal degradation rate of tetracycline by Zn-doped TiO2 and H2 O2 modified Zn-doped TiO2 was 85.27% and 88.14%. Peroxide groups were detected in XPS analysis of H2 O2 modified Zn-doped TiO2 , favoring the adsorption of visible light. Furthermore, Zn-doped TiO2 modified by H2 O2 had relatively good reusability, exhibiting a potential practical application for tetracycline's photocatalytic degradation.


Assuntos
Luz , Nanopartículas/química , Tetraciclinas/metabolismo , Titânio/química , Zinco/química , Catálise , Processos Fotoquímicos , Tetraciclinas/química , Difração de Raios X
4.
Water Sci Technol ; 73(11): 2572-82, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27232392

RESUMO

In this study, response surface methodology (RSM) model was applied for optimization of Basic Red 2 (BR2) removal using electrocoagulation/eggshell (ES) coupling process in a batch system. Central composite design was used to evaluate the effects and interactions of process parameters including current density, reaction time, initial pH and ES dosage on the BR2 removal efficiency and energy consumption. The analysis of variance revealed high R(2) values (≥85%) indicating that the predictions of RSM models are adequately applicable for both responses. The optimum conditions when the dye removal efficiency of 93.18% and energy consumption of 0.840 kWh/kg were observed were 11.40 mA/cm(2) current density, 5 min and 3 s reaction time, 6.5 initial pH and 10.91 g/L ES dosage.


Assuntos
Casca de Ovo/química , Modelos Teóricos , Fenazinas/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Animais , Eletrocoagulação , Estrutura Molecular
5.
Water Sci Technol ; 68(4): 934-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23985527

RESUMO

Incomplete oxidation of titanium nitride (TiN) to prepare nitrogen-doped TiO2 was verified by calcining TiN at different temperatures in air for 30 min. The as-prepared samples were characterized by X-ray diffraction, UV-Vis diffuse reflectance spectra and X-ray photoelectron spectroscopy. The results confirmed that oxidizing TiN incompletely is an effective and simple method to prepare nitrogen-doped TiO2. Photocatalytic degradation of phenol was conducted to evaluate the photocatalytic activity of as-prepared samples. The results showed that phenol can be degraded efficiently by the as-prepared samples under visible light; low phenol concentration was conducive to degradation; the optimum calcination temperature and photocatalyst dosage are 650 °C and 0.5 g/L, respectively. The effects of different light sources on phenol degradation were compared. The reusability of nitrogen-doped TiO2 was tested and the results indicated a relatively good reusability under laboratory conditions.


Assuntos
Nitrogênio/química , Fenol/química , Titânio/química , Oxirredução , Luz Solar , Fatores de Tempo , Poluentes Químicos da Água/química , Purificação da Água/métodos
6.
J Hazard Mater ; 170(1): 163-8, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19482421

RESUMO

The photochemistry of para-chlorophenol (4-CP) under UV irradiation by using a 125-W high-pressure mercury lamp as light source with the presence of nitrite in a solid water ice matrix had been studied. The experiments were carried out in a photochemical cold chamber reactor at -14 to -12 degrees C. Each influence factor of the 4-CP photoconversion kinetics in the water ice was inspected. The results show that the 4-CP photoconversion obeys the first-order kinetics model and the initial concentration of 4-CP, the initial concentration of nitrite, pH value, light intensity, inorganic ions and the water quality all have significant influence on the photoconversion rate. In addition, nine intermediate products were characterized by GC-MS, HPLC-ESI-MS and HPLC techniques and the possible photoconversion mechanism was proposed accordingly. It is concluded that the mechanism and photoproducts of 4-CP photolysis in ice are changed due to the presence of NO(2)(-).


Assuntos
Clorofenóis/química , Nitritos/química , Fotólise , Temperatura Baixa , Gelo , Cinética , Raios Ultravioleta , Poluentes Químicos da Água
7.
J Phys Chem B ; 110(17): 8587-92, 2006 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-16640411

RESUMO

A simple and efficient approach has been set up for fabricating highly active sulfated titania-silica (SO(4)(2-)/TiO(2)-SiO(2)): Ti(SO(4))(2) was hydrolyzed in the presence of silica, making it possible to sulfate titania and form titania-silica mixed oxide in one step. This study was focused on investigating the roles of sulfate species and silica in improving the physicochemical properties and photoactivity of SO(4)(2-)/TiO(2)-SiO(2) through comparison with sulfated titania (SO(4)(2-)/TiO(2)) and sulfate-free catalysts (TiO(2) and TiO(2)-SiO(2)). Various characterization methods, including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and surface photovoltage spectroscopy (SPS), were employed to test these materials. The results revealed that for SO(4)(2-)/TiO(2) and TiO(2)-SiO(2) the sole presence of either sulfate species or silica imposes negative effects on the photocatalysis behavior of titania, leading them to have negligible photoactivities. On the contrary, in the case of SO(4)(2-)/TiO(2)-SiO(2), sulfate species and silica were proved to act in a cooperative manner; therefore, the following enhanced structure and surface properties of SO(4)(2-)/TiO(2)-SiO(2) were obtained: (i) relatively well-crystallized and smaller-size (15.4 nm) anatase-phase titania was formed upon 500 degrees C calcination without forming rutile phase and (ii) the formation of active surface sulfate species promotes the separation of photoinduced electron-hole pairs and therefore accelerates the photocatalysis reaction. Therefore, its photoactivity is enhanced as a result of the favorable synergic effects between sulfate species and silica due to their simultaneous presence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...