Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Sci Sleep ; 16: 897-906, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974692

RESUMO

Objective: Cigarette smoking and low peripheral nitric oxide synthase (NOS) levels are strongly associated with sleep disorders. However, whether cerebrospinal fluid (CSF) NOS relates to sleep disorders and whether CSF NOS mediates the relationship between cigarette smoking and sleep disorders is unclear. Methods: We measured CSF levels of total NOS (tNOS) and its isoforms (inducible NOS [iNOS] and constitutive NOS [cNOS]) in 191 Chinese male subjects. We applied the Pittsburgh Sleep Quality Index (PSQI). Results: The PSQI scores of active smokers were significantly higher than those of non-smokers, while CSF tNOS, iNOS, and cNOS were significantly lower (all p < 0.001). CSF tNOS, iNOS, and cNOS were negatively associated with PSQI scores in the general population (all p < 0.001). Mediation analysis suggested that CSF tNOS, iNOS, and cNOS mediate the relationship between smoking and PSQI scores, and the indirect effect accounted for 78.93%, 66.29%, and 81.65% of the total effect, respectively. Conclusion: Cigarette smoking is associated with sleep disorders. Active smokers had significantly lower CSF levels of tNOS, iNOS, and cNOS. Furthermore, tNOS, iNOS, and cNOS mediate the relationship between cigarette smoking and sleep quality. This study provides insights into how cigarette smoke affects sleep disorders.

2.
Front Psychiatry ; 15: 1339558, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721616

RESUMO

Introduction: Patients with alcohol use disorder (AUD) often experience repeated withdrawal. Impulsivity is the most relevant factor influencing successful withdrawal. Brain-derived neurotrophic factor (BNDF) and fibroblast growth factor 21 (FGF21) are associated with impulsivity. Previous studies on the differential effects of BDNF or FGF21 on impulsivity have focused on single-gene effects and have inconsistent results. We aim to investigate the effects of BDNF rs6265 and FGF21 rs11665896, individually and together, on impulsivity during alcohol withdrawal in patients with AUD. Methods: We recruited 482 adult Han Chinese males with AUD and assessed their impulsivity using the Barratt Impulsivity Scale. Genomic DNA was extracted and genotyped from peripheral blood samples. Statistical analysis was conducted on the data. Results: The T-test and 2 × 2 analysis of variance were used to investigate the effects of the genes on impulsivity. There was a significant BDNF × FGF21 interaction on no-planning impulsiveness (F = 9.15, p = 0.003, η2p = 0.03). Simple main effects analyses and planned comparisons showed that BDNF rs6265 A allele × FGF21 rs11665896 T allele was associated with higher no-planning impulsiveness. Finally, hierarchical regression analyses revealed that only the interaction of BDNF and FGF21 accounted for a significant portion of the variance in no-planning impulsiveness. Conclusion and significance: The combination of BDNF rs6265 A allele and FGF21 rs11665896 T allele may increase impulsivity and discourage alcohol withdrawal. Our study provides a possible genetic explanation for the effects of associated impulsivity in patients with AUD from the perspective of gene-gene interactions.

3.
Plants (Basel) ; 13(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38475433

RESUMO

As one of the most prominent gene families, R2R3-MYB transcription factors significantly regulate biochemical and physiological processes under salt stress. However, in Sophora alopecuroides, a perennial herb known for its exceptional saline alkali resistance, the comprehensive identification and characterization of SaR2R3-MYB genes and their potential functions in response to salt stress have yet to be determined. We investigated the expression profiles and biological functions of SaR2R3-MYB transcription factors in response to salt stress, utilizing a transcriptome-wide mining method. Our analysis identified 28 SaR2R3-MYB transcription factors, all sharing a highly conserved R2R3 domain, which were further divided into 28 subgroups through phylogenetic analysis. Some SaR2R3-MYB transcription factors showed induction under salt stress, with SaR2R3-MYB15 emerging as a potential regulator based on analysis of the protein-protein interaction network. Validation revealed the transcriptional activity and nuclear localization of SaR2R3-MYB15. Remarkably, overexpression of SaR2R3-MYB15 in transgenic plants could increase the activity of antioxidant enzymes and the accumulation of proline but decrease the content of malondialdehyde (MDA), compared with wild-type plants. Moreover, several salt stress-related genes showed higher expression levels in transgenic plants, implying their potential to enhance salt tolerance. Our findings shed light on the role of SaR2R3-MYB genes in salt tolerance in S. alopecuroides.

4.
J Org Chem ; 88(13): 9293-9305, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37284734

RESUMO

A visible-light-induced three-component reaction of 2-aryl indoles/benzimidazoles, Hantzsch esters, and sodium pyrosulfite through a radical cascade cyclization process with the insertion of sulfur dioxide is described. It provides a novel and powerful way for the synthesis of alkylsulfonated isoquinolinones. Hantzsch esters and Na2S2O5 are employed as alkyl radical precursors and SO2 surrogate, respectively. This transformation exhibits good functional group tolerance and substrate applicability under mild conditions.


Assuntos
Benzimidazóis , Dióxido de Enxofre , Ciclização , Ésteres , Indóis
5.
Materials (Basel) ; 14(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34947495

RESUMO

Polyvinylidene fluoride (PVDF) is an advanced functional polymer which exhibits excellent chemical and thermal stability, and good mechanical, piezoelectric and ferroelectic properties. This work opens a new strategy for the fabrication of nanocomposites, combining the functional properties of PVDF and advanced inorganic nanomaterials. Electrophoretic deposition (EPD) has been developed for the fabrication of films containing PVDF and nanoparticles of TiO2, MnO2 and NiFe2O4. An important finding was the feasibility of EPD of electrically neutral PVDF and inorganic nanoparticles using caffeic acid (CA) and catechol violet (CV) as co-dispersants. The experiments revealed strong adsorption of CA and CV on PVDF and inorganic nanoparticles, which involved different mechanisms and facilitated particle dispersion, charging and deposition. The analysis of the deposition yield data, chemical structure of the dispersants and the microstructure and composition of the films provided an insight into the adsorption and dispersion mechanisms and the influence of deposition conditions on the deposition rate, film microstructure and composition. PVDF films provided the corrosion protection of stainless steel. Overcoming the limitations of other techniques, this investigation demonstrates a conceptually new approach for the fabrication of PVDF-NiFe2O4 films, which showed superparamagnetic properties. The approach developed in this investigation offers versatile strategies for the EPD of advanced organic-inorganic nanocomposites.

6.
Phys Chem Chem Phys ; 19(18): 11631-11638, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28430285

RESUMO

In this work, phosphorus-doped graphene quantum dots (P-GQDs) with a high phosphorus doping content (>7 at%) are synthesized via an electrochemical approach. Sodium phytate (C6H6Na12O24P6), a green food antioxidant additive, is used as the electrolyte for providing both a phosphorus source and an electrolysis environment. The obtained P-GQDs exhibit excellent scavenging activity of free radicals, such as hydroxyl radicals (˙OH) and 2,2-diphenyl-1-picrylhydrazyl (DPPH). Combined with Raman, FT-IR, and XPS spectral analyses, the reason for high phosphorus content and the mechanism of free radical scavenging of P-GQDs are investigated in our work.

7.
Langmuir ; 32(34): 8641-9, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27506575

RESUMO

This work reports a modified electrochemical method for rapid and large-scale preparing graphene quantum dots (GQDs) by introduction of active free radicals, which were produced by hydrogen peroxide or ultraviolet radiation. These free radicals can deepen the oxidized or reduced level of working electrode in electrochemical process and thus lead to GQDs with high concentration and small size, but different surface oxidized degree. The improved oxidation and reduction mechanism were analyzed in this work. Meanwhile, the optical properties and oxidizability of GQDs with different surface oxidized degree were investigated. It is found that these GQDs can be used as an oxidizing agent and their oxidizability is related to the degree being oxidized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...