Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; : e202400484, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472129

RESUMO

Hydrogenation of CO2 to olefin catalyzed by iron-based catalysts is a sustainable and important way to achieve carbon neutrality. In this study, iron-based catalysts were facilely prepared by direct pyrolysis of ferric fumarate (FF), which are applied to CO2 hydrogenation to olefin reaction to explore the effects of pyrolysis temperature and atmosphere on catalytic performance of the catalysts. Among them, NaFe-Air-400 catalyst exhibits the highest catalytic activity with 33.7 %, and light olefin selectivity reaches as high as 47.1 %. The catalytic performance of pyrolytic catalysts is better than that the impregnated NaFe catalyst on activated carbon (NaFe/AC). A series of XRD, Raman and SEM characterization results show a suitable pyrolysis temperature would promote the balance between amorphous carbon and graphene, which can affect the formation of FexCy phase, leading the distinctive activity and olefin selectivity. Hence, the presented one-step pyrolysis methodology would provide a facile and quick synthesis of highly-active iron-based catalyst design for CO2 conversion.

2.
Food Sci Nutr ; 7(12): 3941-3949, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31890172

RESUMO

Salted duck egg white, a major by-product of salted egg yolk production, is rich in nutrients. However, its high salinity limits its application in the food industry. In the present study, three haloduric bacterium strains (C1, C2, and C3) were isolated from Jinhua ham, and strain C1 exhibited higher ratio of the transparent circle diameter to the colony diameter (HC) and gelatin liquefaction. Strain C1 was further identified as a member of the genus Staphylococcus through gene sequencing and EzTaxon-e analyses. Salted duck egg white was fermented by strain C1, and the thermal stability, microstructure, amino acid composition, and γ-aminobutyric acid of the egg white were compared with egg white without fermentation. The fermented salted duck egg white had a significantly low salinity. Meanwhile, it increased its thermal stability compared with the control through losing an endotherm at around 85°C and forming a new endotherm peak starting at 91.8°C. Additionally, free amino acids and γ-aminobutyric acid were found only in the fermented salted duck egg white. These indicated that fermentation with salt-resistant strains could alter the structure of salted duck egg white and improve its nutritional quality.

3.
Zhongguo Zhong Yao Za Zhi ; 39(15): 2942-6, 2014 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-25423837

RESUMO

OBJECTIVE: To study the in-vitro inducing apoptosis mechanism of human hepatoma SMMC-7721 cells by 2',4'-di- hydroxy-6'-methoxy-3',5'-dimethylchalcone (DMC), a chalcone compound from Cleistocalyx operculatus. METHOD: Quantitative DNA fragmentation assay was carried out to detect the effect of DMC of different concentrations on SMMC-7721 cells, according to the method of Sellins and Cohen with some modifications. Telomerase activities of the cells were determined by PCR-ELISA methods. The expression quantity of c-myc and hTERT mRNA were determined by semi-quantitative RT-PCR The effect of DMC on expression levels of cmyc and hTERT protein were measured by western blot. RESULT: The percentage of DNA fragmentation increased with notable concen- tration dependence, after treatment with DMC for 48 h. Compared with that of control group, the telomerase activity of the cells de- creased by (66.2 ± 2.1)% after 48 h treatment with 20 µmol x L(-1) DMC, the mRNA expression of c-myc and hTERT decreased by (67.3 ± 2.1)% and (64.4 ± 2.3)%, respectively, and the protein expression of c-myc and hTERT decreased by (69.6 ± 1.9)% and (71.3 ± 2.4)%, respectively. CONCLUSION: DMC can induce SMMC-7721 cell apoptosis and the apoptosis mechanism may be related to the decreased mRNA and protein expression of c-myc and hTERT.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Chalconas/farmacologia , Neoplasias Hepáticas/patologia , Syzygium/química , Linhagem Celular Tumoral , Fragmentação do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Telomerase/genética , Telomerase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...