Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.247
Filtrar
1.
Acta Pharm Sin B ; 14(6): 2361-2377, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38828136

RESUMO

T cell-redirecting bispecific antibodies are specifically designed to bind to tumor-associated antigens, thereby engaging with CD3 on the T cell receptor. This linkage between tumor cells and T cells actively triggers T cell activation and initiates targeted killing of the identified tumor cells. These antibodies have emerged as one of the most promising avenues within tumor immunotherapy. However, despite success in treating hematological malignancies, significant advancements in solid tumors have yet to be explored. In this review, we aim to address the critical challenges associated with T cell-redirecting bispecific antibodies and explore novel strategies to overcome these obstacles, with the ultimate goal of expanding the application of this therapy to include solid tumors.

2.
mSystems ; : e0128923, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837392

RESUMO

Antibiotic resistance and tolerance remain a major problem for the treatment of staphylococcal infections. Identifying genes that influence antibiotic susceptibility could open the door to novel antimicrobial strategies, including targets for new synergistic drug combinations. Here, we developed a genome-wide CRISPR interference library for Staphylococcus aureus, demonstrated its use by quantifying gene fitness in different strains through CRISPRi-seq, and used it to identify genes that modulate susceptibility to the lipoglycopeptide dalbavancin. By exposing the library to sublethal concentrations of dalbavancin using both CRISPRi-seq and direct selection methods, we not only found genes previously reported to be involved in antibiotic susceptibility but also identified genes thus far unknown to affect antibiotic tolerance. Importantly, some of these genes could not have been detected by more conventional transposon-based knockout approaches because they are essential for growth, stressing the complementary value of CRISPRi-based methods. Notably, knockdown of a gene encoding the uncharacterized protein KapB specifically sensitizes the cells to dalbavancin, but not to other antibiotics of the same class, whereas knockdown of the Shikimate pathway showed the opposite effect. The results presented here demonstrate the promise of CRISPRi-seq screens to identify genes and pathways involved in antibiotic susceptibility and pave the way to explore alternative antimicrobial treatments through these insights.IMPORTANCEAntibiotic resistance is a challenge for treating staphylococcal infections. Identifying genes that affect how antibiotics work could help create new treatments. In our study, we made a CRISPR interference library for Staphylococcus aureus and used this to find which genes are critical for growth and also mapped genes that are important for antibiotic sensitivity, focusing on the lipoglycopeptide antibiotic dalbavancin. With this method, we identified genes that altered the sensitivity to dalbavancin upon knockdown, including genes involved in different cellular functions. CRISPRi-seq offers a means to uncover untapped antibiotic targets, including those that conventional screens would disregard due to their essentiality. This paves the way for the discovery of new ways to fight infections.

3.
Curr Drug Deliv ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38847256

RESUMO

PURPOSE: Reproducibility and scale-up production of microspheres through spray drying present significant challenges. In this study, biodegradable microspheres of Triamcinolone Acetonide Acetate (TAA) were prepared using a novel static mixing method by employing poly( lactic-co-glycolic acid) (PLGA) as the sustained-release carrier. METHODS: TAA-loaded microspheres (TAA-MSs) were prepared using a static mixing technique. The PLGA concentration, polyvinyl alcohol concentration (PVA), phase ratio of oil/water, and phase ratio of water/solidification were optimized in terms of the particle size, drug loading (DL), and encapsulation efficiency (EE) of TAA-MSs. The morphology of TAA-MSs was examined using Scanning Electron Microscopy (SEM), while the physicochemical properties were evaluated through X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), and Fourier Transform Infrared Spectroscopy (FT-IR). The in vitro release of TAA-MSs was compared to that of the pure drug (TAA) using a water-bath vibration method in the medium of pH 7.4 at 37°C. RESULTS: The formulation composition and preparation condition for the preparation of TAA-MSs were optimized as follows: the PLGA concentration was 1%, the phase ratio of oil(dichloromethane) /water (PVA solution) was 1:3, the phase ratio of water (PVA solution)/solidification was 1:2. The optimized TAA-MSs displayed spherical particles with a size range of 30-70 µm, and DL and EE values of 27.09% and 98.67%, respectively. Moreover, the drug-loaded microspheres exhibited a significant, sustained release, with 20% of the drug released over a period of 28 days. The XRD result indicated that the crystalline form of TAA in microspheres had been partly converted into the amorphous form. DSC and FT-IR results revealed that some interactions between TAA and PLGA occurred, indicating that the drug was effectively encapsulated into PLGA microspheres. CONCLUSION: TAA-loaded PLGA microspheres have been successfully prepared via the static mixing technique with enhanced EE and sustained-release manner.

4.
Int J Biol Macromol ; : 133139, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38878929

RESUMO

The microencapsulation of polysaturated fatty acids by spray drying remains a challenge due to their susceptibility to oxidation. In this work, antioxidant Pickering emulsions were attempted as feeds to produce oxidation stable tuna oil microcapsules. The results indicated that the association between chitosan (CS) and ovalbumin (OVA) was a feasible way to fabricate antioxidant and wettable complexes and a high CS percentage favored these properties. The particles could yield tuna oil Pickering emulsions with enhanced oxidation stability through high-pressure homogenization, which were successfully spray dried to produce microcapsules with surface oil content of 8.84 % and microencapsulation efficiency of 76.65 %. The microcapsules exhibited significantly improved oxidation stability and their optimum peroxide values after storage at 50 °C, 85 % relative humidity, or natural light for 15 d were 48.67 %, 60.07 %, and 39.69 % respectively lower than the powder derived from the OVA-stabilized emulsion. Hence, Pickering emulsions stabilized by the CS/OVA polyelectrolyte complexes are potential in the production of oxidation stable polyunsaturated fatty acid microcapsules by spray drying.

5.
Front Pharmacol ; 15: 1383831, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863976

RESUMO

Background: The COVID-19 pandemic has had a profound global impact, although the majority of recently infected cases have presented with mild to moderate symptoms. Previous clinical studies have demonstrated that Shufeng Jiedu (SFJD) capsule, a Chinese herbal patent medicine, effectively alleviates symptoms associated with the common cold, H1N1 influenza, and COVID-19. This study aimed to assess the efficacy and safety of SFJD capsules in managing symptoms of mild to moderate COVID-19 infection. Methods: A randomized, double-blind, placebo-controlled trial was conducted from May to December 2022 at two hospitals in China. Mild and moderate COVID-19-infected patients presenting respiratory symptoms within 3 days from onset were randomly assigned to either the SFJD or placebo groups in a 1:1 ratio. Individuals received SFJD capsules or a placebo three times daily for five consecutive days. Participants were followed up for more than 14 days after their RT-PCR nucleoid acid test for SARS-CoV-2 turned negative. The primary outcome measure was time to alleviate COVID-19 symptoms from baseline until the end of follow-up. Results: A total of 478 participants were screened; ultimately, 407 completed the trial after randomization (SFJD, n = 203; placebo, n = 204). No statistically significant difference in baseline parameters was observed between the two groups. The median time to alleviate all symptoms was 7 days in the SFJD group compared to 8 days in the placebo group (p = 0.037). Notably, the SFJD group significantly attenuated fever/chills (p = 0.04) and headache (p = 0.016) compared to the placebo group. Furthermore, the median time taken to reach normal body temperature within 24 h was reduced by 7 hours in the SFJD group compared to the placebo group (p = 0.033). No deaths or instances of serious or critical conditions occurred during this trial period; moreover, no serious adverse events were reported. Conclusion: The trial was conducted in a unique controlled hospital setting, and the 5-day treatment with SFJD capsules resulted in a 1-day reduction in overall symptoms, particularly headache and fever/chills, among COVID-19-infected participants with mild or moderate symptoms. Compared to placebo, SFJD capsules were found to be safe with fewer side effects. SFJD capsules could potentially serve as an effective treatment for alleviating mild to moderate symptoms of COVID-19. Clinical Trial Registration: https://www.isrctn.com/, identifier ISRCTN14236594.

6.
Acta Biomater ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908417

RESUMO

Starvation therapy aims to "starve" tumor cells by cutting off their nutritional supply. However, due to the complex and varied energy metabolism of tumors, targeting a single nutrient supply often fails to yield significant therapeutic benefits. This study proposes a tumor energy cocktail therapy that combines metformin, an oxidative phosphorylation inhibitor, with 2-deoxy-D-glucose (2-DG), a glycolysis inhibitor, to target tumor cells. To minimize the dosage of both drugs, we have developed a drug delivery strategy that prepared metformin as a nanoderivative, denoted as MA-dots. These MA-dots not only preserve the antitumor properties of metformin but also serve as a targeted delivery platform for 2-DG, ensuring its direct reach to the tumor site. Upon reaching the acidic tumor environment, the composite disintegrates, releasing 2-DG to inhibit glycolysis by targeting hexokinase 2 (HK2), the key enzyme in glycolysis, while MA-dots inhibit mitochondrial OXPHOS. This dual action significantly reduces ATP production in tumor cells, leading to apoptosis. In human lung tumor cells, the half-maximal inhibitory concentration (IC50) of 2-DG@MA-dots was significantly lower than that of either metformin or 2-DG alone, showing a nearly 100-fold and 30-fold reduction in IC50 values to 11.78 µg mL-1, from 1159 µg mL-1 and 351.20 µg mL-1, respectively. In studies with A549 tumor-bearing mice, the combination of low-dose 2-DG and metformin did not impede tumor growth, whereas 2-DG@MA-dots markedly decreased tumor volume, with the mean final tumor volume in the combination treatment group being approximately 89 times greater than that in the 2-DG@MA-dot group. STATEMENT OF SIGNIFICANCE: Metformin is a promising antitumor agent capable of modulating mitochondrial oxidative phosphorylation to inhibit cancer growth. However, its antitumor efficacy is limited when used alone due to compensatory energy mechanisms. Hence, we introduced glycolysis inhibitor 2-deoxy-D-glucose (2-DG) to inhibit an alternative tumor energy pathway. In our study, we developed a drug delivery strategy using metformin-derived nanomedicine (MA-dots) to load 2-DG. This approach enables the co-delivery of both drugs and their synergistic effect at the tumor site, disrupting both energy pathways and introducing an innovative "energy cocktail therapy."

7.
Integr Med Res ; 13(2): 101045, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38831890

RESUMO

Background: Post-viral olfactory dysfunction (PVOD) is the common symptoms of long COVID, lacking of effective treatments. Traditional Chinese medicine (TCM) is claimed to be effective in treating olfactory dysfunction, but the evidence has not yet been critically appraised. We conducted a systematic review to evaluate the effectiveness and safety of TCM for PVOD. Methods: We searched eight databases to identified clinical controlled studies about TCM for PVOD. The Cochrane risk of bias tools and GRADE were used to evaluate the quality of evidence. Risk ratio (RR), mean differences (MD), and 95 % confidence interval (CI), were used for effect estimation and RevMan 5.4.1 was used for data analysis. Results: Six randomized controlled trials (RCTs) (545 participants), two non-randomized controlled trials (non-RCTs) (112 participants), and one retrospective cohort study (30 participants) were included. The overall quality of included studies was low. Acupuncture (n = 8) and acupoint injection (n = 3) were the mainly used TCM therapies. Five RCTs showed a better effect in TCM group. Four trials used acupuncture, and three trials used acupoint injection. The results of two non-RCTs and one cohort study were not statistically significant. Two trials reported mild to moderate adverse events (pain and brief syncope caused by acupuncture or acupoint injection). Conclusions: Limited evidence focus on acupuncture and acupoint injection for PVOD and suggests that acupuncture and acupoint injection may be effective in improving PVOD. More well-designed trials should focus on acupuncture to confirm the benefit. Protocol registration: The protocol of this review was registered at PROSPERO: CRD42022366776.

8.
Animals (Basel) ; 14(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38891682

RESUMO

Crytosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi are important diarrheal pathogens with a global distribution that threatens the health of humans and animals. Despite cattle being potential transmission hosts of these protozoans, the associated risks to public health have been neglected. In the present study, a total of 1155 cattle fecal samples were collected from 13 administrative regions of Heilongjiang Province. The prevalence of Cryptosporidium spp., G. duodenalis, and E. bieneusi were 5.5% (64/1155; 95% CI: 4.2-6.9), 3.8% (44/1155; 95% CI: 2.7-4.9), and 6.5% (75/1155; 95% CI: 5.1-7.9), respectively. Among these positive fecal samples, five Cryptosporidium species (C. andersoni, C. bovis, C. ryanae, C. parvum, and C. occultus), two G. duodenalis assemblages (E and A), and eight E. bieneusi genotypes (BEB4, BEB6, BEB8, J, I, CHS7, CHS8, and COS-I) were identified. Phylogenetic analysis showed that all eight genotypes of E. bieneusi identified in the present study belonged to group 2. It is worth noting that some species/genotypes of these intestinal protozoans are zoonotic, suggesting a risk of zoonotic disease transmission in endemic areas. The findings expanded our understanding of the genetic composition and zoonotic potential of Cryptosporidium spp., G. duodenalis, and E. bieneusi in cattle in Heilongjiang Province.

9.
Mol Immunol ; 172: 76-84, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38917598

RESUMO

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC), one of the malignancies with a wide expression of stress ligands recognized by Vδ1γδ T cells, has received much attention in adoptive immunotherapy of γδ T cells. In this study, we aimed to identify the potential anti-tumor Vδ1γδ T subpopulations in HCC. METHODS: Healthy donors (HDs) and HCC patients were recruited from the Affiliated Cancer Hospital of Zhengzhou University. Blood and tumor tissue samples were obtained respectively. Bioinformatics methods were used to analyze total γδ T cells and subsets infiltration, overall survival of HCC patients with high and low infiltration level of Vδ1γδ T cells, and IFNG, granzyme A, granzyme B and perforin expression in TRDV1high/lowCD69high/low groups. CD69 expression and Vδ1γδT cells infiltration in HCC were detected by immunofluorescence. Phenotypic analysis of Vδ1γδ T cells in blood and tumor tissue samples were performed by flow cytometry. RESULTS: Vδ1γδ T cells infiltrating in HCC were associated with better clinical outcome. Study in tumor micro-environment (TME) of HCC demonstrated that not total Vδ1γδ T but CD69+ Vδ1γδ subset infiltration was associated with smaller tumor volume. Moreover, HCC patients simultaneously with high TRDV1 and CD69 expression produced more effector molecules and had longer survival time. Since Vδ1γδ T cells in the tumor microenvironment were often difficult to access, we demonstrated that CD69+ Vδ1γδ T cells also existed in peripheral blood mononuclear cells (PBMC) of HCC and displayed enhanced cytotoxic potentials than HDs. Finally, we investigated the functions and found that CD69+ Vδ1γδ T cells exhibited stronger tumor reactivities when challenged by tumor cells. CONCLUSIONS: CD69+ Vδ1γδ T cells are functional Vδ1γδ T cell subsets in patients with HCC. Circulating CD69+ Vδ1γδ T cell is a promising candidate in immunotherapy of HCC.

10.
Comp Biochem Physiol B Biochem Mol Biol ; 274: 111001, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908544

RESUMO

Mannose-binding lectin (MBL) is a vital member of the lectin family, crucial for mediating functions within the complement lectin pathway. In this study, following the cloning of the mannose-binding lectin (MBL) gene in the ridgetail white prawn, Exopalaemon carinicauda, we examined its expression patterns across various tissues and its role in combating challenges posed by Vibrio parahaemolyticus. The results revealed that the MBL gene spans 1342 bp, featuring an open reading frame of 972 bp. It encodes a protein comprising 323 amino acids, with a predicted relative molecular weight of 36 kDa and a theoretical isoelectric point of 6.18. The gene exhibited expression across various tissues including the eyestalk, heart, gill, hepatopancreas, stomach, intestine, ventral nerve cord, muscle, and hemolymph, with the highest expression detected in the hepatopancreas. Upon challenge with V. parahaemolyticus, RT-PCR analysis revealed a trend of MBL expression in hepatopancreatic tissues, characterized by an initial increase followed by a subsequent decrease, peaking at 24 h post-infection. Employing RNA interference to disrupt MBL gene expression resulted in a significant increase in mortality rates among individuals challenged with V. parahaemolyticus. Furthermore, we successfully generated the Pet32a-MBL recombinant protein through the construction of a prokaryotic expression vector for conducting in vitro bacterial inhibition assays, which demonstrated the inhibitory effect of the recombinant protein on V. parahaemolyticus, laying a foundation for further exploration into its immune mechanism in response to V. parahaemolyticus challenges.

11.
Infect Drug Resist ; 17: 2469-2484, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915319

RESUMO

Objective: This study explored the level of nuclear factor-ƙB (NF-ƙB) in the bronchoalveolar lavage fluid (BALF) of children with severe Mycoplasma Pneumoniae pneumonia (SMPP) and the correlation between NF-ƙB, cellular immunity, and clinical characteristics. Methods: A total of 41 hospitalized children diagnosed with SMPP were selected and included in the SMPP group, and 13 bronchial foreign bodies (FB) without infection during the same period were included in the FB group. The NF-ƙB in the BALF of participants was detected by enzyme-linked immunosorbent assay. The correlation between NF-ƙB and laboratory findings, cellular immunity, and the clinical features in children with SMPP was analyzed. The differences in chest imaging and bronchoscopy in children with SMPP were observed. Results: The levels of NF-ƙB were significantly increased in the SMPP group compared with the FB group (P < 0.001). There were correlations between different NF-ƙB pairs in the SMPP group (P < 0.01). Nuclear factor-ƙB (NF-ƙB) correlated with IL-6, the mycoplasma load in BALF, fever peak, length of hospital stay, and sputum suppository (P < 0.05). The higher the intracellular NF-ƙB level in BALF, the lower the CD3+ CD4+ value in peripheral blood (P < 0.05). Intracellular NF-ƙB and total NF-ƙB correlated with pleural effusion, pericardial effusion, and extrapulmonary complications (P < 0.05). Conclusion: NF-ƙB is involved in airway inflammation changes in children with SMPP. The higher the level of NF-ƙB in the airway, the more severe the clinical manifestations, and the longer the length of hospital stay is likely to be.

12.
Expert Opin Ther Pat ; 34(5): 297-313, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38849323

RESUMO

INTRODUCTION: Stimulator of Interferon Genes (STING) is an innate immune sensor. Activation of STING triggers a downstream response that results in the expression of proinflammatory cytokines (TNF-α, IL-1ß) via nuclear factor kappa-B (NF-κB) or the expression of type I interferons (IFNs) via an interferon regulatory factor 3 (IRF3). IFNs can eventually result in promotion of the adaptive immune response including activation of tumor-specific CD8+ T cells to abolish the tumor. Consequently, activation of STING has been considered as a potential strategy for cancer treatment. AREAS COVERED: This article provides an overview on structures and pharmacological data of CDN-like and non-nucleotide STING agonists acting as anticancer agents (January 2021 to October 2023) from a medicinal chemistry perspective. The data in this review come from EPO, WIPO, RCSB PDB, CDDI. EXPERT OPINION: In recent years, several structurally diverse STING agonists have been identified. As an immune enhancer, they are used in the treatment of tumors, which has received extensive attention from scientific community and pharmaceutical companies. Despite the multiple challenges that have appeared, STING agonists may offer opportunities for immunotherapy.


Assuntos
Antineoplásicos , Proteínas de Membrana , Neoplasias , Patentes como Assunto , Humanos , Animais , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/farmacologia , Proteínas de Membrana/agonistas , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Imunidade Inata/efeitos dos fármacos , Imunoterapia/métodos
13.
Anal Chem ; 96(25): 10332-10340, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38865206

RESUMO

The neurofilament protein light chain (NEFL) is a potential biomarker of neurodegenerative diseases, and interleukin-6 (IL-6) is also closely related to neuroinflammation. Especially, NEFL and IL-6 are the two most low-abundance known protein markers of neurological diseases, making their detection very important for the early diagnosis and prognosis prediction of such kinds of diseases. Nevertheless, quantitative detection of low concentrations of NEFL and IL-6 in serum remains quite difficult, especially in the point-of-care test (POCT). Herein, we developed a portable, sensitive electrochemical biosensor combined with smartphones that can be applied to multiple scenarios for the quantitative detection of NEFL and IL-6, meeting the need of the POCT. We used a double-antibody sandwich configuration combined with polyenzyme-catalyzed signal amplification to improve the sensitivity of the biosensor for the detection of NEFL and IL-6 in sera. We could detect NEFL as low as 5.22 pg/mL and IL-6 as low as 3.69 pg/mL of 6 µL of serum within 2 h, demonstrating that this electrochemical biosensor worked well with serum systems. Results also showed its superior detection capabilities over those of high-sensitivity ELISA for serum samples. Importantly, by detecting NEFL and IL-6 in sera, the biosensor showed its potential for the POCT model detection of all known biomarkers of neurological diseases, making it possible for the mass screening of patients with neurodegenerative diseases.


Assuntos
Biomarcadores , Técnicas Biossensoriais , Técnicas Eletroquímicas , Interleucina-6 , Técnicas Biossensoriais/métodos , Humanos , Biomarcadores/sangue , Biomarcadores/análise , Interleucina-6/sangue , Interleucina-6/análise , Testes Imediatos , Proteínas de Neurofilamentos/sangue , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/sangue , Limite de Detecção , Smartphone
14.
Chem Sci ; 15(22): 8311-8322, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38846391

RESUMO

Drug resistance in tumor cells remains a persistent clinical challenge in the pursuit of effective anticancer therapy. XIAP, a member of the inhibitor of apoptosis protein (IAP) family, suppresses apoptosis via its Baculovirus IAP Repeat (BIR) domains and is responsible for drug resistance in various human cancers. Therefore, XIAP has attracted significant attention as a potential therapeutic target. However, no XIAP inhibitor is available for clinical use to date. In this study, we surprisingly observed that arsenic trioxide (ATO) induced a rapid depletion of XIAP in different cancer cells. Mechanistic studies revealed that arsenic attacked the cysteine residues of BIR domains and directly bound to XIAP, resulting in the release of zinc ions from this protein. Arsenic-XIAP binding suppressed the normal anti-apoptosis functions of BIR domains, and led to the ubiquitination-dependent degradation of XIAP. Importantly, we further demonstrate that arsenic sensitized a variety of apoptosis-resistant cancer cells, including patient-derived colon cancer organoids, to the chemotherapy drug using cisplatin as a showcase. These findings suggest that targeting XIAP with ATO offers an attractive strategy for combating apoptosis-resistant cancers in clinical practice.

15.
Int J Nanomedicine ; 19: 5071-5094, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846644

RESUMO

Background: The commercial docetaxel (DTX) formulation causes severe side effects due to polysorbate 80 and ethanol. Novel surfactant-free nanoparticle (NP) systems are needed to improve bioavailability and reduce side effects. However, controlling the particle size and stability of NPs and improving the batch-to-batch variation are the major challenges. Methods: DTX-loaded bovine serum albumin nanoparticles (DTX-BSA-NPs) were prepared by a novel thermal-driven self-assembly/microfluidic technology. Single-factor analysis and orthogonal test were conducted to obtain the optimal formulation of DTX-BSA-NPs in terms of particle size, encapsulation efficiency (EE), and drug loading (DL). The effects of oil/water flow rate and pump pressure on the particle size, EE, and DL were investigated to optimize the preparation process of DTX-BSA-NPs. The drug release, physicochemical properties, stability, and pharmacokinetics of NPs were evaluated. Results: The optimized DTX-BSA-NPs were uniform, with a particle size of 118.30 nm, EE of 89.04%, and DL of 8.27%. They showed a sustained release of 70% over 96 hours and an increased stability. There were some interactions between the drug and excipients in DTX-BSA-NPs. The half-life, mean residence time, and area under the curve (AUC) of DTX-BSA-NPs increased, but plasma clearance decreased when compared with DTX. Conclusion: The thermal-driven self-assembly/microfluidic combination method effectively produces BSA-based NPs that improve the bioavailability and stability of DTX, offering a promising alternative to traditional formulations.


Assuntos
Disponibilidade Biológica , Docetaxel , Estabilidade de Medicamentos , Nanopartículas , Tamanho da Partícula , Soroalbumina Bovina , Docetaxel/farmacocinética , Docetaxel/química , Docetaxel/administração & dosagem , Animais , Soroalbumina Bovina/química , Soroalbumina Bovina/farmacocinética , Soroalbumina Bovina/administração & dosagem , Nanopartículas/química , Taxoides/farmacocinética , Taxoides/química , Taxoides/administração & dosagem , Antineoplásicos/farmacocinética , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Ratos Sprague-Dawley , Masculino , Composição de Medicamentos/métodos , Ratos
16.
Org Lett ; 26(23): 4986-4991, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38842488

RESUMO

We herein disclose a highly efficient protocol for the esterification and etherification of alcohols, leveraging a Sc(OTf)3-catalyzed ring-strain release event in the meticulously designed, chromatographically stable mixed anhydrides or benzyl esters that incorporate an intramolecular donor-acceptor cyclopropane (DAC). This versatile method facilitates the straightforward functionalization of sugar, terpene, and steroid alcohols under mild acidic conditions, as showcased by the single-catalyst-driven, dual protection of sugar diol.

17.
Toxicol In Vitro ; 99: 105867, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38848824

RESUMO

Pristimerin (Pris), a bioactive triterpenoid compound extracted from the Celastraceae and Hippocrateaceae families, has been reported to exhibit an anti-cancer property on various cancers. However, the effects of Pris on esophageal cancer are poorly investigated. This current study sought to explore the activity and underlying mechanism of Pris against human esophageal squamous cell carcinoma (ESCC) cells. We demonstrated that Pris showed cytotoxicity in TE-1 and TE-10 ESCC cell lines, and significantly inhibited cell viability in a concentration dependent manner. Pris induced G0/G1 phase arrest and triggered apoptosis. It was also observed that the intracellular ROS level was remarkedly increased by Pris treatment. Besides, the function of Pris mediating the activation of ER stress and the inhibition of AKT/GSK3ß signaling pathway in TE-1 and TE-10 cells was further confirmed, which resulted in cell growth inhibition. And moreover, we revealed that all of the above pathways were regulated through ROS generation. In conclusion, our findings suggested that Pris might be considered as a novel natural compound for the developing anti-cancer drug candidate for human esophageal cancer.

18.
J Magn Reson Imaging ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886922

RESUMO

BACKGROUND: Restriction spectrum imaging (RSI), as an advanced quantitative diffusion-weighted magnetic resonance imaging technique, has the potential to distinguish primary benign and malignant lung lesions. OBJECTIVE: To explore how well the tri-compartmental RSI performs in distinguishing primary benign from malignant lung lesions compared with diffusion-weighted imaging (DWI), and to further explore whether positron emission tomography/magnetic resonance imaging (PET/MRI) can improve diagnostic efficacy. STUDY TYPE: Prospective. POPULATION: 137 patients, including 108 malignant and 29 benign lesions (85 males, 52 females; average age = 60.0 ± 10.0 years). FIELD STRENGTH/SEQUENCE: T2WI, T1WI, multi-b value DWI, MR-based attenuation correction, and PET imaging on a 3.0 T whole-body PET/MR system. ASSESSMENT: The apparent diffusion coefficient (ADC), RSI-derived parameters (restricted diffusion f 1 $$ {f}_1 $$ , hindered diffusion f 2 $$ {f}_2 $$ , and free diffusion f 3 $$ {f}_3 $$ ) and the maximum standardized uptake value (SUVmax) were calculated and analyzed for diagnostic efficacy individually or in combination. STATISTICAL TESTS: Student's t-test, Mann-Whitney U test, receiver operating characteristic (ROC) curves, Delong test, Spearman's correlation analysis. P < 0.05 was considered statistically significant. RESULTS: The f 1 $$ {f}_1 $$ , SUVmax were significantly higher, and f 3 $$ {f}_3 $$ , ADC were significantly lower in the malignant group [0.717 ± 0.131, 9.125 (5.753, 13.058), 0.194 ± 0.099, 1.240 (0.972, 1.407)] compared to the benign group [0.504 ± 0.236, 3.390 (1.673, 6.030), 0.398 ± 0.195, 1.485 ± 0.382]. The area under the ROC curve (AUC) values ranked from highest to lowest as follows: AUC (SUVmax) > AUC ( f 3 $$ {f}_3 $$ ) > AUC ( f 1 $$ {f}_1 $$ ) > AUC (ADC) > AUC ( f 2 $$ {f}_2 $$ ) (AUC = 0.819, 0.811, 0.770, 0.745, 0549). The AUC (AUC = 0.900) of the combined model of RSI with PET was significantly higher than that of either single-modality imaging. CONCLUSION: RSI-derived parameters ( f 1 $$ {f}_1 $$ , f 3 $$ {f}_3 $$ ) might help to distinguish primary benign and malignant lung lesions and the discriminatory utility of f 2 $$ {f}_2 $$ was not observed. The RSI exhibits comparable or potentially enhanced performance compared with DWI, and the combined RSI and PET model might improve diagnostic efficacy. TECHNICAL EFFICACY: Stage 2.

19.
Int J Cardiol ; : 132297, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936429
20.
Curr Issues Mol Biol ; 46(6): 5682-5700, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38921011

RESUMO

It is known that sialyllactose (SL) in mammalians is a major source of sialic acid (Sia), which can further form cytidine monophosphate sialic acid (CMP-Sia), and the final product is polysialic acid (polySia) using polysialyltransferases (polySTs) on the neural cell adhesion molecule (NCAM). This process is called NCAM polysialylation. The overexpression of polysialylation is strongly related to cancer cell migration, invasion, and metastasis. In order to inhibit the overexpression of polysialylation, in this study, SL was selected as an inhibitor to test whether polysialylation could be inhibited. Our results suggest that the interactions between the polysialyltransferase domain (PSTD) in polyST and CMP-Siaand the PSTD and polySia could be inhibited when the 3'-sialyllactose (3'-SL) or 6'-sialyllactose (6'-SL) concentration is about 0.5 mM or 6'-SL and 3 mM, respectively. The results also show that SLs (particularly for 3'-SL) are the ideal inhibitors compared with another two inhibitors, low-molecular-weight heparin (LMWH) and cytidine monophosphate (CMP), because 3'-SL can not only be used to inhibit NCAM polysialylation, but is also one of the best supplements for infant formula and the gut health system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...