Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Anal Chem ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954777

RESUMO

Efficient cell manipulation is essential for numerous applications in bioanalysis and medical diagnosis. However, the lack of stability and strength in the secondary flow, coupled with the narrow range of practical throughput, severely restricts the diverse applications. Herein, we present an innovative inertial microfluidic device that employs a spiral channel for high-throughput cell manipulation. Our investigation demonstrates that the regulation of Dean-like secondary flow in the microchannel can be achieved through geometric confinement. Introducing ordered microstructures into the ultralong spiral channel (>90 cm) stabilizes and accelerates the secondary flow among different loops. Consequently, effective manipulation of blood cells within a wide cell throughput range (1.73 × 108 to 1.16 × 109 cells/min) and cancer cells across a broad throughput range (0.5 × 106 to 5 × 107 cells/min) can be achieved. In comparison to previously reported technologies, our engineering approach of stabilizing and accelerating secondary flow offers specific performance for cell manipulation under a wide range of high-throughput manner. This engineered spiral channel would be promising in biomedical analysis, especially when cells need to be focused efficiently on large-volume liquid samples.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38597685

RESUMO

The development and application of micropatterning technology play a promising role in the manipulation of biological substances and the exploration of life sciences at the microscale. However, the universally adaptable micropatterning method with user-friendly properties for acceptance in routine laboratories remains scarce. Herein, a green, facile, and rapid microcontact printing method is reported for upgrading popularization and diversification of biological patterning. The three-step printing can achieve high simplicity and fidelity of additive-free polydimethylsiloxane (PDMS) micropatterning and chip fabrication within 8 min as well as keep their high stability and diversity. A detailed experimental report is provided to support the advanced microcontact printing method. Furthermore, the applications of easy-to-operate PDMS-patterned chips are extensively validated to complete microdroplet array assembly with spatial control, cell pattern formation with high efficiency and geometry customization, and microtissue assembly and biomimetic tumor construction on a large scale. This straightforward method promotes diverse micropatternings with minimal time, effort, and expertise and maximal biocompatibility, which might broaden its applications in interdisciplinary scientific communities. This work also offers an insight into the establishment of popularized and market-oriented microtools for biomedical purposes such as biosensing, organs on a chip, cancer research, and bioscreening.

3.
Front Bioeng Biotechnol ; 11: 1281375, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033813

RESUMO

Single-cell manipulation is the key foundation of life exploration at individual cell resolution. Constructing easy-to-use, high-throughput, and biomimetic manipulative tools for efficient single-cell operation is quite necessary. In this study, a facile and efficient encapsulation of single cells relying on the massive and controllable production of droplets and collagen-alginate microgels using a microfluidic device is presented. High monodispersity and geometric homogeneity of both droplet and microgel generation were experimentally demonstrated based on the well-investigated microfluidic fabricating procedure. The reliability of the microfluidic platform for controllable, high-throughput, and improved single-cell encapsulation in monodisperse droplets and microgels was also confirmed. A single-cell encapsulation rate of up to 33.6% was achieved based on the established microfluidic operation. The introduction of stromal material in droplets/microgels for encapsulation provided single cells an in vivo simulated microenvironment. The single-cell operation achievement offers a methodological approach for developing simple and miniaturized devices to perform single-cell manipulation and analysis in a high-throughput and microenvironment-biomimetic manner. We believe that it holds great potential for applications in precision medicine, cell microengineering, drug discovery, and biosensing.

4.
Macromol Biosci ; 23(12): e2300267, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37580176

RESUMO

Micropatterning is becoming an increasingly popular tool to realize microscale cell positioning and decipher cell activities and functions under specific microenvironments. However, a facile methodology for building a highly precise cell pattern still remains challenging. In this study, A simple and straightforward method for stable and efficient cell patterning with ultra-low background using polydimethylsiloxane through-hole membranes is developed. The patterning process is conveniently on the basis of membrane peeling and routine pipetting. Cell patterning in high quality involving over 97% patterning coincidence and zero residue on the background is achieved. The high repeatability and stability of the established method for multiple types of cell arrangements with different spatial profiles is demonstrated. The customizable cell patterning with ultra-low background and high diversity is confirmed to be quite feasible and reliable. Furthermore, the applicability of the patterning method for investigating the fundamental cell activities is also verified experimentally. The authors believe this microengineering advancement has valuable applications in many microscale cell manipulation-associated research fields including cell biology, cell engineering, cell imaging, and cell sensing.


Assuntos
Dimetilpolisiloxanos , Dimetilpolisiloxanos/química
5.
Anal Chem ; 95(4): 2504-2512, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36651128

RESUMO

The establishment and application of a generalizable three-dimensional (3D) tumor device for high-throughput screening plays an important role in drug discovery and cancer therapeutics. In this study, we introduce a facile microplatform for considerable 3D tumor generation and combinatorial drug screening evaluation. High fidelity of chip fabrication was achieved depending on the simple and well-improved microcontact printing. We demonstrated the high stability and repeatability of the established tumor-on-a-chip system for controllable and massive production of 3D tumors with high size uniformity. Importantly, we accomplished the screening-like chemotherapy investigation involving individual and combinatorial drugs and validated the high accessibility and applicability of the system in 3D tumor-based manipulation and analysis on a large scale. This achievement in tumor-on-a-chip has potential applications in plenty of biomedical fields such as tumor biology, pharmacology, and tissue microengineering. It offers an insight into the development of the popularized microplatform with easy-to-fabricate and easy-to-operate properties for cancer exploration and therapy.


Assuntos
Neoplasias , Humanos , Avaliação Pré-Clínica de Medicamentos/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Ensaios de Triagem em Larga Escala , Descoberta de Drogas , Impressão Tridimensional
6.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-988595

RESUMO

@#Periodontitis is a widespread disease worldwide, with the primary cause of tissue loss being an immune inflammatory response mediated by bacteria. Increasing evidence has revealed a significant correlation between mitochondrial dysfunction and the occurrence and progression of periodontitis. This paper provides a review of current research on the role of mitochondrial dysfunction in the occurrence and development of periodontitis and related therapies from the perspectives of oxidative stress, inflammatory responses, and the regulation of mitochondrial homeostasis. Mitochondria are the main source and target of cellular reactive oxygen species. Mitochondrial dysfunction can generate large amounts of reactive oxygen species, exacerbating local oxidative stress in periodontal tissues and causing cell toxicity and tissue damage. Mitochondria are also the center of cellular inflammatory responses, and the positive feedback loop of inflammation induced by mitochondrial dysfunction may explain the persistent and unresolved nature of periodontitis. Biomaterials loaded with pharmacological agents show potential in restoring mitochondrial function, controlling the development of periodontitis, and promoting periodontal tissue regeneration. However, the key sites of mitochondrial dysfunction in the occurrence and development of periodontitis are not yet fully understood, and the improvement of mitochondrial function in periodontal therapy is still in the experimental stage. Future research efforts should focus on the effect of mitochondrial dysfunction on periodontal cells and explore its specific mechanism in the occurrence and progression of periodontitis in order to provide new insights into the treatment of periodontitis.

7.
J Am Chem Soc ; 143(49): 20633-20639, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34870975

RESUMO

Chiral cyclic olefins, 1-methylcyclohexenes, are versatile building blocks for the synthesis of pharmaceuticals and natural products. Despite the prevalence of these structural motifs, the development of efficient synthetic methods remains an unmet challenge. Herein we report a novel desymmetric isomerization of exocyclic olefins using a series of newly designed chiral cobalt catalysts, which enables a straightforward construction of chiral 1-methylcyclohexenes with diversified functionalities. The synthetic utility of this methodology is highlighted by a concise and enantioselective synthesis of a natural product, ß-bisabolene. The versatility of the reaction products is further demonstrated by multifarious derivatizations.

8.
Int Immunopharmacol ; 100: 108066, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34492536

RESUMO

Severe acute lung injury (ALI) cause significant morbidity and mortality worldwide. MicroRNAs (miRNAs) are possible biomarkers and therapeutic targets for ALI. We aimed to explore the role of miR-762, a known oncogenic factor, in the pathogenesis of ALI. Levels of miR-762 in lung tissues of LPS-treated ALI mice and blood cells of patients with lung injury were measured. Injury of human lung epithelial cell line A549 was induced by LPS stimulation. A downstream target of miR-762, NFIX, was predicted using online tools. Their interactions were validated by luciferase reporter assay. Effects of targeted regulation of the miR-762/NFIX axis on cell proliferation, apoptosis, and inflammatory responses were tested in vitro in A549 cells in vivo with an ALI mouse model. We found that upregulation of miR-762 expression and downregulation of NFIX expression were associated with lung injury. Either miR-762 inhibition or NFIX overexpression in A549 lung cells significantly attenuated LPS-mediated impairment of cell proliferation and viability. Notably, increasing expressions of miR-762 inhibitor or NFIX in vivo via airway lentivirus infection alleviated the LPS-induced ALI in mice. Further, targeted downregulation of miR-762 expression or upregulation of NFIX expression in A549 cells markedly down-regulates NF-κB/IRF3 activation, and substantially reduces the production of inflammatory factors, including TNF-α, IL-6, and IL-8. This study reveals a novel role for the miR-762/NFIX pathway in ALI pathogenesis and sheds new light on targeting this pathway for diagnosis, prevention, and therapy.


Assuntos
Lesão Pulmonar Aguda/imunologia , MicroRNAs/metabolismo , Fatores de Transcrição NFI/genética , Complicações Pós-Operatórias/imunologia , Transdução de Sinais/genética , Células A549 , Lesão Pulmonar Aguda/sangue , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Animais , Ponte de Artéria Coronária/efeitos adversos , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/imunologia , Técnicas de Silenciamento de Genes , Células HEK293 , Voluntários Saudáveis , Humanos , Fator Regulador 3 de Interferon/metabolismo , Lipopolissacarídeos/imunologia , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos , MicroRNAs/genética , NF-kappa B/metabolismo , Complicações Pós-Operatórias/sangue , Complicações Pós-Operatórias/genética , Complicações Pós-Operatórias/patologia , Transdução de Sinais/imunologia
9.
Angew Chem Int Ed Engl ; 59(17): 6750-6755, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32118345

RESUMO

Migratory functionalization of alkenes has emerged as a powerful strategy to achieve functionalization at a distal position to the original reactive site on a hydrocarbon chain. However, an analogous protocol for alkyne substrates is yet to be developed. Herein, a base and cobalt relay catalytic process for the selective synthesis of (Z)-2-alkenes and conjugated E alkenes by migratory hydrogenation of terminal alkynes is disclosed. Mechanistic studies support a relay catalytic process involving a sequential base-catalyzed isomerization of terminal alkynes and cobalt-catalyzed hydrogenation of either 2-alkynes or conjugated diene intermediates. Notably, this practical non-noble metal catalytic system enables efficient control of the chemo-, regio-, and stereoselectivity of this transformation.

10.
Chem Rev ; 119(4): 2876-2953, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30565455

RESUMO

Cobalt has become increasingly attractive in homogeneous catalysis because of its unique characteristics and outstanding catalytic performance in addition to being cheap and earth-abundant. Hydride transfer processes are involved in a broad range of organic transformations that allow the facile preparation of various useful chemicals and synthetic building blocks. These reactions have continuously received great attention both from academia and industry. In this perspective, we review homogeneous cobalt-catalyzed hydride transfer reactions according to the classified reaction types and provide a comprehensive overview of the design, synthesis, and reactivity of cobalt catalysts, their catalytic applications, and reaction mechanisms.

11.
J Am Chem Soc ; 140(22): 6873-6882, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29781616

RESUMO

Olefin isomerization is a significant transformation in organic synthesis, which provides a convenient synthetic route for internal olefins and remote functionalization processes. The selectivity of an olefin isomerization process is often thermodynamically controlled. Thus, to achieve selectivity under kinetic control is very challenging. Herein, we report a novel cobalt-catalyzed regioselective olefin isomerization reaction. By taking the advantage of fine-tunable NNP-pincer ligand structures, this catalytic system features high kinetic control of regioselectivity. This mild catalytic system enables the isomerization of 1,1-disubstituted olefins bearing a wide range of functional groups in excellent yields and regioselectivity. The synthetic utility of this transformation was highlighted by the highly selective preparation of a key intermediate for the total synthesis of minfiensine. Moreover, a new strategy was developed to realize the selective monoisomerization of 1-alkenes to 2-alkenes dictated by installing substituents on the γ-position of the double bonds. Mechanistic studies supported that the in situ generated Co-H species underwent migratory insertion of double bond/ß-H elimination sequence to afford the isomerization product. The less hindered olefin products were always preferred in this cobalt-catalyzed olefin isomerization due to an effective ligand control of the regioselectivity for the ß-H elimination step.

12.
J Am Chem Soc ; 138(27): 8588-94, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27322175

RESUMO

Herein, we report a novel cobalt-catalyzed stereodivergent transfer hydrogenation of alkynes to Z- and E-alkenes. Effective selectivity control is achieved based on a rational catalyst design. Moreover, this mild system allows for the transfer hydrogenation of alkynes bearing a wide range of functional groups in good yields using catalyst loadings as low as 0.2 mol %. The general applicability of this procedure is highlighted by the synthesis of more than 50 alkenes with good chemo- and stereoselectivity. A preliminary mechanistic study revealed that E-alkene product was generated via sequential alkyne hydrogenation to give Z-alkene intermediate, followed by a Z to E alkene isomerization process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...