Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20697, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001242

RESUMO

Industrial processing of kelp generates large amounts of kelp-soaking wastewater (KSW), which contains a large amount of nutrient-containing substances. The plant growth-promoting effect might be further improved by combined application of growth-promoting bacteria and the nutrient-containing KSW. Here, a greenhouse experiment was conducted to determine the effect of the mixture of KSW and Bacillus methylotrophicus M4-1 (MS) vs. KSW alone (SE) on wheat seedlings, soil properties and the microbial community structure in wheat rhizosphere soil. The available potassium, available nitrogen, organic matter content and urease activity of MS soil as well as the available potassium of the SE soil were significantly different (p < 0.05) from those of the CK with water only added, increased by 39.51%, 36.25%, 41.61%, 80.56% and 32.99%, respectively. The dry and fresh weight of wheat seedlings from MS plants increased by 166.17% and 50.62%, respectively, while plant height increased by 16.99%, compared with CK. Moreover, the abundance and diversity of fungi in the wheat rhizosphere soil were significantly increased (p < 0.05), the relative abundance of Ascomycetes and Fusarium spp. decreased, while the relative abundance of Bacillus and Mortierella increased. Collectively, the combination of KSW and the plant growth-promoting strain M4-1 can promote wheat seedlings growth and improve the microecology of rhizosphere microorganisms, thereby solving the problems of resource waste and environmental pollution, ultimately turning waste into economic gain.


Assuntos
Inoculantes Agrícolas , Kelp , Microbiota , Plântula , Triticum , Águas Residuárias , Rizosfera , Solo/química , Potássio/farmacologia , Microbiologia do Solo
2.
Front Microbiol ; 14: 1274346, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901825

RESUMO

The HSE-12 strain isolated from peanut rhizosphere soil was identified as Bacillus amyloliquefaciens by observation of phenotypic characteristics, physiological and biochemical tests, 16S rDNA and gyrB gene sequencing. In vitro experiments showed that the strain possessed biocontrol activity against a variety of pathogens including Sclerotium rolfsii. The strain has the ability to produce hydrolytic enzymes, as well as volatile organic compounds with antagonistic and probiotic effects such as ethyleneglycol and 2,3-butanediol. In addition, HSE-12 showed potassium solubilizing (10.54 ± 0.19 mg/L), phosphorus solubilization (168.34 ± 8.06 mg/L) and nitrogen fixation (17.35 ± 2.34 mg/g) abilities, and was able to secrete siderophores [(Ar-A)/Ar × 100%: 56%] which promoted plant growth. After inoculating peanut with HSE-12, the available phosphorus content in rhizosphere soil increased by 27%, urease activity increased by 43%, catalase activity increased by 70% and sucrase activity increased by 50% (p < 0.05). The dry weight, fresh weight and the height of the first pair of lateral branches of peanuts increased by 24.7, 41.9, and 36.4%, respectively, compared with uninoculated peanuts. In addition, compared with the blank control, it increased the diversity and richness of peanut rhizosphere bacteria and changed the community structure of bacteria and fungi. The relative abundance of beneficial microorganisms such as Sphingomonas, Arthrobacter, RB41, and Micromonospora in rhizosphere soil was increased, while the relative abundance of pathogenic microorganisms such as Aspergillus, Neocosmospora, and Rhizoctonia was decreased.

3.
Microorganisms ; 12(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38257884

RESUMO

The cultivation of poplar trees is hindered by persistent cropping challenges, resulting in reduced wood productivity and increased susceptibility to soil-borne diseases. These issues primarily arise from alterations in microbial structure and the infiltration of pathogenic fungi. To investigate the impact on soil fertility, we conducted an analysis using soil samples from both perennial poplar trees and three successive generations of continuously cropped poplar trees. The quantity and community composition of bacteria and fungi in the rhizosphere were assessed using the Illumina MiSeq platform. The objective of this study is to elucidate the impact of continuous cropping challenges on soil fertility and rhizosphere microorganisms in poplar trees, thereby establishing a theoretical foundation for investigating the mechanisms underlying these challenges. The study found that the total bacteria in the BT group is 0.42 times higher than the CK group, and the total fungi is 0.33 times lower than the CK group. The BT and CK groups presented relatively similar bacterial richness and diversity, while the indices showed a significant (p < 0.05) higher fungal richness and diversity in the CK group. The fractions of Bacillus were 2.22% and 2.41% in the BT and CK groups, respectively. There was a 35.29% fraction of Inocybe in the BT group, whereas this was barely observed in the CK group. The fractions of Geopora were 26.25% and 5.99%, respectively in the BT and CK groups. Modifying the microbial community structure in soil subjected to continuous cropping is deemed as the most effective approach to mitigate the challenges associated with this agricultural practice.

4.
Biology (Basel) ; 11(5)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35625519

RESUMO

The continuous cropping obstacles in poplar cultivation cause declines in wood yield and serious soil-borne diseases, mainly because of structural alterations in the microbial community and the aggregation of pathogenic fungi. Bacillus subtilis T6-1, isolated from poplar rhizospheric soil, has strong antagonistic effects on poplar pathogens. We aimed to investigate the effects of B. subtilis T6-1 on the structure of the microbial community in the poplar rhizosphere. Poplar seedlings were replanted in three successive generations of soil. The diameter at breast height, plant height, and the number of culturable bacteria of the poplars inoculated with T6-1 exceeded those in the non-inoculated control group. qPCR analysis revealed that the total abundance of T6-1 bacteria in the treated poplars was remarkably higher in contrast to that in the control group. Illumina MiSeq sequencing was employed to track the alterations in diversity and structure of the total microbial community in the poplar rhizosphere inoculated with B. subtilis T6-1. Fungal diversity and abundance in the T6-1 rhizosphere were remarkably lower in contrast with those in the control rhizosphere. The proportion of Bacillus sp. in the total bacterial community in the T6-1 and control groups was 3.04% and 2.38%, respectively, while those of the Rhizoctonia sp. was 2.02% and 5.82%, respectively. In conclusion, B. subtilis T6-1 has the potential to serve as a microbial agent, enhancing the structure of the rhizosphere microbial community as well as promoting tree growth in poplar cultivation.

5.
Biomed Res Int ; 2022: 9506227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35578723

RESUMO

Certain plant growth-promoting bacteria (PGPB) reduce salt stress damage in plants. Bacillus subtilis HG-15 is a halotolerant bacterium (able to withstand NaCl concentrations as high as 30%) isolated from the wheat rhizoplane in the Yellow River delta. A qualitative and quantitative investigation of the plant growth-promoting characteristics of this strain confirmed nitrogen fixation, potassium dissolution, ammonia, plant hormone, ACC deaminase, and proline production abilities. B. subtilis HG-15 colonization of wheat roots, stems, and leaves was examined via scanning electron microscopy, rep-PCR, and double antibiotic screening. After inoculation with the B. subtilis HG-15 strain, the pH (1.08-2.69%), electrical conductivity (3.17-11.48%), and Na+ (12.98-15.55%) concentrations of rhizosphere soil significantly decreased (p < 0.05). Under no-salt stress (0.15% NaCl), low-salt stress (0.25% NaCl), and high-salt stress (0.35% NaCl) conditions, this strain also significantly increased (p < 0.05) the dry weight (17.76%, 24.46%, and 9.31%), fresh weight (12.80%, 20.48%, and 7.43%), plant height (7.79%, 5.86%, and 13.13%), and root length (10.28%, 17.87%, and 48.95%). Our results indicated that B. subtilis HG-15 can effectively improve the growth of wheat and elicit induced systemic tolerance in these plants, thus showing its potential as a microbial inoculant that can protect wheat under salt stress conditions.


Assuntos
Tolerância ao Sal , Triticum , Bacillus subtilis/genética , Raízes de Plantas/microbiologia , Salinidade , Tolerância ao Sal/genética , Cloreto de Sódio/farmacologia , Triticum/genética
6.
Microb Physiol ; 32(5-6): 135-145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35588702

RESUMO

Jujube is an important economic crop in the Xinjiang Uygur Autonomous Region. Microbial diversity in the rhizosphere is essential for plant quality; however, soil bacterial diversity and community structure in the jujube rhizosphere have not been characterized in this region. In this study, we used pyrosequencing to analyze bacterial diversity and community structure at different growth stages in the jujube rhizosphere in Hetian, Kashi, and Aksu prefectures. These results revealed a greater bacterial diversity in the 8-year jujube rhizosphere as compared with the 3-year-old rhizosphere taken from the same sampling area. Moreover, samples obtained from Kashi prefecture showed the largest diversity among the different areas. The most abundant phyla across all soil samples were Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes, and Firmicutes. Dominant phyla in the 8-year jujube rhizosphere accounted for the increased observed diversity. Furthermore, comparative analysis of the bacterial communities with respect to rhizosphere age and sampling areas revealed a significant correlation between soil properties and phyla diversity. To the best of our knowledge, this is the first study of jujube rhizosphere bacterial diversity and community structure in the southern Xinjiang Uygur Autonomous Region, and we hope that our research provides a reference for future studies.


Assuntos
Rizosfera , Ziziphus , Microbiologia do Solo , Biodiversidade , Bactérias/genética , Solo/química
7.
Front Microbiol ; 13: 863341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464941

RESUMO

Meloidogyne incognita is one of the most destructive soil pests, causing serious economic losses in tomato production. Here, in vitro experiments demonstrated that the Bacillus licheniformis strain JF-22 has the potential to prevent M. incognita infection. A pot experiment confirmed that B. licheniformis strain JF-22 isolated from the tomato rhizosphere soil and planted in the tomato root-knot nematode disease area effectively prevented and controlled M. incognita, reducing its negative effect on tomato growth. Additionally, the composition of volatile substances secreted by B. licheniformis strain JF-22 was analyzed using solid-phase microextraction and gas chromatography-mass spectrometry. We detected acetoin, 2,3-Butanediol, [R-(R*,R*) ]-, and hexamethyl cyclotrisiloxane as the main components among these volatiles. Using MiSeq sequencing technology and bioinformatics, we analyzed the influence of B. licheniformis strain JF-22 on the microbial community of the tomato rhizosphere. B. licheniformis strain JF-22 changed the composition of the microbial community; particularly, it significantly reduced the diversity of the fungal community. Furthermore, using the FUNGuild and PICRUSt databases, we predicted the effect of JF-22 on microbial community function. In conclusion, B. licheniformis strain JF-22 may be considered as a potential biocontrol agent against M. incognita.

8.
Sci Rep ; 12(1): 2758, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177784

RESUMO

Long-term monocultures have severely inhibited the cultivation of Chinese peanut (Arachis hypogaea L.). In this study, the effects of continuous cropping on soil chemical properties and microbial communities were investigated in peanut fields that had been in crop rotation for 10 years and in monoculture for 10 years. The results found that long-term monoculture increased the activities of available potassium, available phosphorus, available nitrogen, soil organic matter, urease, acid phosphatase and catalase; while decreasing the activity of catalase. The diversity and abundance of soil bacteria and fungi is higher under continuous peanut cultivation. At the genus level, the relative abundance of potentially beneficial microflora genera was higher in the rhizosphere soil of rotational cropping than in continuous cropping, while the opposite was true for the relative abundance of potentially pathogenic fungal genera. Principal coordinates and cluster analysis indicated that continuous cropping altered the structure of the microbial community. The results of the functional predictions showed significant differences in the functioning of the rhizosphere microbial community between continuous and rotational cropping. In conclusion, long-term continuous cropping changed the chemical properties of the soil, altered the structure and function of the soil bacterial and fungal communities in peanut rhizosphere, which to some extent reduced the relative abundance of potentially beneficial microbial genera and increased the relative abundance of potentially pathogenic fungal genera, thus increasing the potential risk of soil-borne diseases and reducing the yield and quality of peanut. Therefore, in the actual production process, attention should be paid not only to the application of chemical fertilizers, but also to crop rotation and the application of microbial fertilizers.

9.
Biomed Res Int ; 2021: 5171086, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34611527

RESUMO

As the main economic crop cultivated in the Yellow River Delta, winter jujube contains various nutrients. However, soil salinization and fungal diseases have affected the yield and quality of winter jujube. In order to use plant growth-promoting rhizobacteria (PGPR) to reduce these damages, the antagonistic bacteria CZ-6 isolated from the rhizosphere of wheat in saline soil was selected for experiment. Gene sequencing analysis identified CZ-6 as Bacillus amyloliquefaciens. In order to understand the salt tolerant and disease-resistant effects of CZ-6 strain, determination of related indicators of salt tolerance, pathogen antagonistic tests, and anti-fungal mechanism analyses was carried out. A pot experiment was conducted to evaluate the effect of CZ-6 inoculation on the rhizosphere microbial community of winter jujube. The salt tolerance test showed that CZ-6 strain can survive in a medium with a NaCl concentration of 10% and produces indole acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase. Studies on the inhibition mechanism of pathogenic fungi show that CZ-6 can secrete cellulase, protease, and xylanase. Gas chromatography-mass spectrometry (GC-MS) analysis showed that CZ-6 can release volatile organic compounds (VOCs), including 2-heptanone and 2-nonanone. In addition, the strain can colonize the rhizosphere and migrate to the roots, stems, and leaves of winter jujube, which is essential for plant growth or defense against pathogens. Illumina MiSeq sequencing data indicated that, compared to the control, the abundance of salt-tolerant bacteria Tausonia in the CZ-6 strain treatment group was significantly increased, while the richness of Chaetomium and Gibberella pathogens was significantly reduced. Our research shows that CZ-6 has the potential as a biological control agent in saline soil. Plant damage and economic losses caused by pathogenic fungi and salt stress are expected to be alleviated by the addition of salt-tolerant antagonistic bacteria.


Assuntos
Álcalis/química , Bactérias/metabolismo , Rizosfera , Salinidade , Tolerância ao Sal , Microbiologia do Solo , Ziziphus/microbiologia , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Biodiversidade , Contagem de Colônia Microbiana , Fungos/fisiologia , Hidrolases/metabolismo , Testes de Sensibilidade Microbiana , Filogenia , Compostos Orgânicos Voláteis/análise
10.
Biomed Res Int ; 2021: 8835275, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33506038

RESUMO

Biocontrol by inoculation with beneficial microbes is a proven strategy for reducing the negative effect of soil-borne pathogens. We evaluated the effects of microbial inoculants BIO-1 and BIO-2 in reducing soil-borne wheat diseases and in influencing wheat rhizosphere microbial community composition in a plot test. The experimental design consisted of three treatments: (1) Fusarium graminearum F0609 (CK), (2) F. graminearum + BIO-1 (T1), and (3) F. graminearum F0609 + BIO-2 (T2). The results of the wheat disease investigation showed that the relative efficacies of BIO-1 and BIO-2 were up to 82.5% and 83.9%, respectively. Illumina MiSeq sequencing revealed that bacterial abundance and diversity were significantly higher (P < 0.05) in the treatment groups (T1 and T2) than in the control, with significantly decreased fungal diversity in the T2 group. Principal coordinates and hierarchical clustering analyses revealed that the bacterial and fungal communities were distinctly separated between the treatment and control groups. Bacterial community composition analysis demonstrated that beneficial microbes, such as Sphingomonas, Bacillus, Nocardioides, Rhizobium, Streptomyces, Pseudomonas, and Microbacterium, were more abundant in the treatment groups than in the control group. Fungal community composition analysis revealed that the relative abundance of the phytopathogenic fungi Fusarium and Gibberella decreased and that the well-known beneficial fungi Chaetomium, Penicillium, and Humicola were more abundant in the treatment groups than in the control group. Overall, these results confirm that beneficial microbes accumulate more easily in the wheat rhizosphere following application of BIO-1 and BIO-2 and that the relative abundance of phytopathogenic fungi decreased compared with that in the control group.


Assuntos
Inoculantes Agrícolas/fisiologia , Agentes de Controle Biológico/farmacologia , Microbiota , Doenças das Plantas , Rizosfera , Triticum/microbiologia , Bactérias/classificação , Fungos/classificação , Microbiota/efeitos dos fármacos , Microbiota/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Microbiologia do Solo
11.
Front Plant Sci ; 11: 1094, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765571

RESUMO

The present study investigated the physiological and biochemical characteristics of Enterobacter cloacae HG-1 isolated from saline-alkali soil. We further studied the effect of this strain on the salt tolerance of wheat and on the community structure of nitrogen-fixing bacteria in rhizosphere soil. We determined that the investigated strain had high nitrogen fixation activity and produced iron carriers, 1-aminocyclopropane-1-carboxylic acid deaminase, and plant hormones. The metabolites of this strain contained 2,3-butanediol, [R-(R*, R*)], 2-heptanone, and other growth-promoting and antibacterial substances. The strain was also highly salt-tolerant (10% NaCl). After the inoculation of wheat with the HG-1 strain, we recorded increases in root length, plant height, fresh weight, and dry weight of 19.15%, 18.83%, 16.67%, and 17.96%, respectively, compared with uninoculated plants (P < 0.05). Compared with the leaves of uninoculated plants, the proline concentration in the leaves of inoculated plants increased by 12.43% (P < 0.05), the malondialdehyde level decreased by 27.26% (P < 0.05), K+ increased by 20.69%, Ca2+ increased by 57.53% and Na+ decreased by 31.43% (all P<0.05). Furthermore, we detected that inoculation with the HG-1 strain did not affect the species composition of nitrogen-fixing bacteria in wheat rhizosphere soil at the phylum level. However, the average relative abundance of Proteobacteria was significantly increased, whereas the abundance of Verrucomiorobia was significantly decreased compared with uninoculated plants. At the genus level, we detected 32 genera in control samples and 27 genera in inoculated samples, and the species diversity and relative abundance of samples inoculated with the HG-1 strain decreased compared with uninoculated plants. Inoculated samples had lower abundances of Azospirillum, Rhodomicrobium, and Anabaena. Our study demonstrated that the inoculation of wheat with E. cloacae HG-1 could promote the growth of wheat under salt stress and increase salt stress tolerance. The results of this study investigating the interaction among soil, plants, and microorganisms supplement agricultural microbial databases and could provide a reference for the development of microbial-based saline soil improvement programs.

12.
mSystems ; 5(2)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317390

RESUMO

It is important to expedite our understanding of antibiotic resistance to address the increasing numbers of fatalities and environmental pollution due to the emergence of antibiotic resistance and multidrug-resistant strains. Here, we combined the CRISPR-enabled trackable genome engineering (CREATE) technology and transcriptomic analysis to investigate antibiotic tolerance in Escherichia coli We developed rationally designed site saturation mutagenesis libraries targeting 23 global regulators to identify fitness-conferring mutations in response to diverse antibiotic stresses. We identified seven novel mutations that confer resistance to the ribosome-targeting antibiotics doxycycline, thiamphenicol, and gentamicin in E. coli To the best of our knowledge, these mutations that we identified have not been reported previously during treatment with the indicated antibiotics. Transcriptome sequencing-based transcriptome analysis was further employed to evaluate the genome-wide changes in gene expression in E. coli for SoxR G121P and cAMP receptor protein (CRP) V140W reconstructions, and improved fitness in response to doxycycline and gentamicin was seen. In the case of doxycycline, we speculated that SoxR G121P significantly increased the expression of genes involved in carbohydrate metabolism and energy metabolism to promote cell growth for improved adaptation. In the CRP V140W mutant with improved gentamicin tolerance, the expression of several amino acid biosynthesis genes and fatty acid degradation genes was significantly changed, and these changes probably altered the cellular energy state to improve adaptation. These findings have important significance for understanding such nonspecific mechanisms of antibiotic resistance and developing new antibacterial drugs.IMPORTANCE The growing threat of antimicrobial resistance poses a serious threat to public health care and motivates efforts to understand the means by which resistance acquisition occurs and how this can be combatted. To address these challenges, we expedited the identification of novel mutations that enable complex phenotypic changes that result in improved tolerance to antibiotics by integrating CREATE and transcriptomic analysis of global regulators. The results give us a better understanding of the mechanisms of resistance to tetracycline antibiotics and aminoglycoside antibiotics and also indicate that the method may be used for quickly identifying resistance-related mutations.

13.
Biomed Res Int ; 2019: 3638926, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31032343

RESUMO

Soilborne pathogens affect plant growth and food production worldwide. The application of chemical fertilizers and pesticides to control plant diseases has harmful effects; fortunately, plant growth-promoting rhizobacteria can be used as a potential alternative strategy. Here, Paenibacillus jamilae HS-26 was selected for its highly antagonistic activity against several soilborne pathogens. The bacterium synthesized hydrolytic enzymes and released extracellular antifungal metabolites and volatile organic compounds-primarily, N, N-diethyl-1, 4-phenylenediamine, which was detected by gas chromatography-mass spectrometry and shown to inhibit fungal mycelial growth. Furthermore, HS-26 was useful for nitrogen fixation, phosphate and potassium solubilization, and siderophore and indoleacetic acid production. In vitro tests and pot experiments revealed that HS-26 considerably increased plant biometric parameters. Illumina MiSeq sequencing data showed a significant reduction in soilborne pathogens and increase in beneficial bacteria in the wheat rhizosphere after treatment with strain HS-26.


Assuntos
Antibiose , Paenibacillus/crescimento & desenvolvimento , Desenvolvimento Vegetal/genética , Doenças das Plantas/prevenção & controle , Fertilizantes/efeitos adversos , Fixação de Nitrogênio , Paenibacillus/genética , Paenibacillus/isolamento & purificação , Praguicidas/efeitos adversos , Doenças das Plantas/microbiologia , RNA Ribossômico 16S/genética , Rizosfera , Microbiologia do Solo
14.
AMB Express ; 8(1): 63, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29679179

RESUMO

Rhizospheric microorganisms can increase phosphorus availability in the soil. In this regard, the ability of phosphofungi to dissolve insoluble phosphorus compounds is greater than that of phosphate-solubilizing bacteria. The aim of the current study was to identify efficient phosphofungi that could be developed as commercial microbial agents. Among several phosphate-solubilizing fungal isolates screened, strain CS-1 showed the highest phosphorus-solubilization ability. Based on phylogenetic analysis of the internal transcribed spacer region sequence, it was identified as Aspergillus niger. High-performance liquid chromatography analysis revealed that the mechanism of phosphorus solubilization by CS-1 involved the synthesis and secretion of organic acids, mainly oxalic, tartaric, and citric acids. Furthermore, strain CS-1 exhibited other growth-promoting abilities, including efficient potassium release and degradation of crop straw cellulose. These properties help to returning crop residues to the soil, thereby increasing nutrient availability and sustaining organic matter concentration therein. A pot experiment revealed that CS-1 apparently increased the assessed biometric parameters of wheat seedlings, implying the potential of this strain to be developed as a commercial microbial agent. We used Illumina MiSeq sequencing to investigate the microbial community composition in the rhizosphere of uninoculated wheat plants and wheat plants inoculated with the CS-1 strain to obtain insight into the effect of the CS-1 strain inoculation. The data clearly demonstrated that CS-1 significantly reduced the content of pathogenic fungi, including Gibberella, Fusarium, Monographella, Bipolaris, and Volutella, which cause soil-borne diseases in various crops. Strain CS-1 may hence be developed into a microbial agent for plant growth improvement.

15.
World J Microbiol Biotechnol ; 33(10): 177, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28921048

RESUMO

Antimicrobial peptides are promising anti-infective agent candidates because they have a broad antimicrobial spectrum and bioactivity and are unlikely to elicit antibiotic resistance. The bogorols represent a new cationic antibiotic peptide and possess great therapeutic potential because of their bioactivity and precise mode of action. Here, we report that Bogorol B-JX (BBJX), a peptide previously isolated from Brevibacillus laterosporus JX-5 by us, has significant antibacterial and antitumor activities in vitro. BBJX was found to inhibit methicillin-resistant Staphylococcus aureus (MRSA) at 2.5 µg/mL with distinct mechanisms of action from those against Bacillus bombyseptieus and Escherichia coli. It penetrates MRSA membrane with little visible destruction and binds to genomic DNA. BBJX could inhibit the proliferation of human histiocytic lymphoma cell line U-937 and ConA-activated spleen cells at 5 µg/mL, but was not cytotoxic to the Jurkat cells, resting spleen cells or differentiated macrophage-like U-937 immunocytes. Moreover, BBJX caused apoptosis of U-937 cells by opening the mitochondrial permeability transition pore and stimulating the production of reactive oxygen species. Taken together, these studies provided basis for future medical application of the bogorols.


Assuntos
Antibacterianos/isolamento & purificação , Antineoplásicos/isolamento & purificação , Proteínas de Bactérias/isolamento & purificação , Brevibacillus/química , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Bacillus/efeitos dos fármacos , Proteínas de Bactérias/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Humanos , Células Jurkat , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Peptídeos/isolamento & purificação , Peptídeos/farmacologia
16.
World J Microbiol Biotechnol ; 31(10): 1605-18, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26265360

RESUMO

The establishment of safe and effective methods for controlling fungal disease is an urgent issue in agriculture and forestry. Microbiological control of plant disease is expected to achieve better results than use of chemically derived fungicides. This study aimed to establish Brevibacillus laterosporus JX-5 as a potential microbiological control agent of poplar canker. The bacterium was isolated from the poplar rhizosphere and demonstrated significant growth inhibition of several pathogenic fungi in vitro. The antifungal components of Br. laterosporus JX-5 were isolated and identified. The fermentation broth of Br. laterosporus JX-5 and its main antifungal component, designated as component B, reduced Botryosphaeria dothidea associated canker of the excised poplar branch by 70 and 90%, respectively. Component B is considerably heat-stable, adaptable to a broad pH range, and UV-resistant. It could inhibit Bo. dothidea by permeating the fungal membrane, fracturing the nuclei, damaging the cell wall, and eventually killing the pathogenic fungus. The antifungal activity exhibited by Br. laterosporus JX-5 and its bioactive metabolic products indicate its feasibility as a potential biocontrol agent for plant diseases.


Assuntos
Antibiose , Antifúngicos/metabolismo , Ascomicetos/efeitos dos fármacos , Brevibacillus/fisiologia , Antifúngicos/isolamento & purificação , Ascomicetos/crescimento & desenvolvimento , Brevibacillus/classificação , Brevibacillus/isolamento & purificação , Brevibacillus/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Viabilidade Microbiana/efeitos dos fármacos , Dados de Sequência Molecular , Permeabilidade/efeitos dos fármacos , Filogenia , Doenças das Plantas/microbiologia , Populus/microbiologia , RNA Ribossômico 16S/genética , Rizosfera , Análise de Sequência de DNA , Microbiologia do Solo
17.
Biomed Res Int ; 2015: 972481, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25685820

RESUMO

Fungi are important soil components as both decomposers and plant symbionts and play a major role in ecological and biogeochemical processes. However, little is known about the richness and structure of fungal communities. DNA sequencing technologies allow for the direct estimation of microbial community diversity, avoiding culture-based biases. We therefore used 454 pyrosequencing to investigate the fungal communities in the rhizosphere of Xinjiang jujube. We obtained no less than 40,488 internal transcribed spacer (ITS) rDNA reads, the number of each sample was 6943, 6647, 6584, 6550, 6860, and 6904, and we used bioinformatics and multivariate statistics to analyze the results. The index of diversity showed greater richness in the rhizosphere fungal community of a 3-year-old jujube than in that of an 8-year-old jujube. Most operational taxonomic units belonged to Ascomycota, and taxonomic analyses identified Hypocreales as the dominant fungal order. Our results demonstrated that the fungal orders are present in different proportions in different sampling areas. Redundancy analysis (RDA) revealed a significant correlation between soil properties and the abundance of fungal phyla. Our results indicated lower fungal diversity in the rhizosphere of Xinjiang jujube than that reported in other studies, and we hope our findings provide a reference for future research.


Assuntos
Biodiversidade , DNA Fúngico/genética , DNA Ribossômico/genética , Micorrizas/genética , Rizoma/microbiologia , Microbiologia do Solo , Ziziphus/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala
18.
PLoS One ; 9(5): e94970, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24801615

RESUMO

Coevolution is important for the maintenance of the interaction between a ligand and its receptor during evolution. The interaction between axon guidance molecule Slit and its receptor Robo is critical for the axon repulsion in neural tissues, which is evolutionarily conserved from planarians to humans. However, the mechanism of coevolution between Slit and Robo remains unclear. In this study, we found that coordinated amino acid changes took place at interacting sites of Slit and Robo by comparing the amino acids at these sites among different organisms. In addition, the high level correlation between evolutionary rate of Slit and Robo was identified in vertebrates. Furthermore, the sites under positive selection of slit and robo were detected in the same lineage such as mosquito and teleost. Overall, our results provide evidence for the coevolution between Slit and Robo.


Assuntos
Evolução Molecular , Glicoproteínas/genética , Proteínas do Tecido Nervoso/genética , Receptores Imunológicos/genética , Animais , Glicoproteínas/química , Humanos , Proteínas do Tecido Nervoso/química , Receptores Imunológicos/química , Proteínas Roundabout
19.
World J Microbiol Biotechnol ; 29(8): 1443-52, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23468248

RESUMO

An antifungal Actinomyces BS-112 strain, with Aspergillus flavus as the target pathogen, was isolated from soil in the forest land of Mountain Tai. This strain showed a strong antagonistic activity against various mold fungi in food and feed. Strain BS-112 was identified as Streptomyces hygroscopicus based on its morphologic, cultural, physiological, biochemical characteristics, cell wall components and 16S rDNA sequence. Four active components were separated and purified from strain BS-112. These four antifungal components were identified as tetrins A and B and tetramycins A and B using spectroscopic analysis including mass spectrometry and nuclear magnetic resonance spectroscopy. Tetrins A and B and tetramycins A and B strongly inhibited the growth of A. flavus, A. alutaceus, A. niger, and A. fumigatus in vitro.


Assuntos
Antifúngicos/química , Antifúngicos/metabolismo , Microbiologia do Solo , Streptomyces/isolamento & purificação , Streptomyces/metabolismo , Aspergillus/efeitos dos fármacos , Aspergillus/crescimento & desenvolvimento , Macrolídeos/química , Macrolídeos/metabolismo , Espectrometria de Massas , Dados de Sequência Molecular , Filogenia , Streptomyces/classificação , Streptomyces/genética
20.
Bioresour Technol ; 111: 504-6, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22391587

RESUMO

A novel small antibacterial peptide was obtained from the liquid culture of Brevibacillus brevis XDH, which is a broad-spectrum antagonistic bacterium isolated from the soil of Mountain Tai, China. This peptide was purified from the fermentation medium of strain XDH via ammonium sulfate precipitation, cation exchange chromatography, and reversed-phase high-performance liquid chromatography (HPLC), successively. The structure of the active linear peptide was elucidated using mass spectra (MS) and nuclear magnetic resonance (NMR) analyses that consisted of nine amino acids. This peptide was easily soluble in water, thermally stable and strongly inhibited the growth of Escherichia coli and Staphylococcus aureus in vitro. The present data support the identification of a novel antibacterial peptide, which was named Tostadin.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Brevibacillus/química , Antibacterianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Meios de Cultura , Fermentação , Espectroscopia de Ressonância Magnética , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...