Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anticancer Drugs ; 33(4): 323-334, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35266884

RESUMO

The key regulatory roles of circular RNAs (circRNAs) in human diseases have been demonstrated, including breast cancer (BC). The purpose of this study is to explore the role of circ_0102273, a newly discovered circRNA, in BC progression. The expression levels of circ_0102273, microRNA (miR)-1236-3p and 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3) were determined by quantitative real-time PCR. Cell proliferation, migration and invasion were measured using colony formation assay, EdU staining, wound healing assay and transwell assay. Glucose consumption, lactate production and ATP level were detected to evaluate cell glycolysis. The interaction between miR-1236-3p and circ_0102273 or PFKFB3 was confirmed by dual-luciferase reporter assay and RIP assay. Additionally, western blot analysis was utilized for measuring PFKFB3 protein expression. In-vivo experiments were performed to further explore the function of circ_0102273 in BC tumorigenesis. Our data showed that circ_0102273 was highly expressed in BC tumor tissues and cells, and its downregulation could inhibit BC cell proliferation, metastasis and glycolysis. MiR-1236-3p was confirmed to be sponged by circ_0102273, and its inhibitor could reverse the negative regulation of sh-circ_0102273 on BC cell proliferation, metastasis and glycolysis. PFKFB3 could be targeted by miR-1236-3p, and its expression could be positively regulated by circ_0102273. In addition, miR-1236-3p could suppress BC cell proliferation, metastasis and glycolysis, while this effect could be abolished by PFKFB3. Furthermore, circ_0102273 knockdown also had been discovered to reduce BC tumorigenesis in vivo. In summary, our research proposed that circ_0102273 might be a potential target for BC treatment, which could inhibit BC proliferation, metastasis and glycolysis through the miR-1236-3p/PFKFB3 axis.


Assuntos
Neoplasias da Mama , MicroRNAs , Neoplasias da Mama/patologia , Carcinogênese , Proliferação de Células/genética , Feminino , Glicólise , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , RNA Circular/genética
2.
3 Biotech ; 12(4): 91, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35308811

RESUMO

Feline parvovirus causes infectious diseases, and Chaphamaparvovirus is a novel type of feline parvovirus. The present study aims to establish a method that can be used in clinical rapid detection of feline Chaphamaparvovirus (FeChPV), for facilitate the timely and effective diagnosis and treatment of sick animals and shorten the diagnosis time of clinical diseases. The experimental samples in this study are from 20 cats undergoing physical examination in Hefei Xin'an Animal Hospital. An SYBR Green I-based qPCR assay was performed to detect FeChPV. A pair of specific primers was designed based on the VP1 gene to perform the assay. The detection assay showed high sensitivity with a detection limit of 1.07 × 101 copies/µL and high specificity for detection of only the target virus. The coefficients of C t value variation were calculated to assess the reproducibility of the qPCR assay, and the inter- and intra-assay ranged from 0.21 to 0.67% and 0.10 to 0.56%, respectively. The result of clinical sample detection showed that the infection rate of FeChPV in 124 samples detected using qPCR assay was higher than that with conventional PCR. The established qPCR assay could be a low-cost, convenient, and reliable method to detect FeChPV in clinical practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...