Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Mol Oncol ; 17(9): 1917-1929, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37013911

RESUMO

The presence of large genomic rearrangements (LGRs) has been heavily investigated in breast and ovarian cancer. However, correlations between LGRs and cancer types beyond these two have not been extensively profiled, likely due to the highly inefficient methods of detecting these types of alterations. This study utilized next-generation sequencing (NGS) to analyze and classify the germline LGR profile in 17 025 cancer patients across 22 cancer types. We characterized newly identified LGRs based on predicted pathogenicity and took a closer look at genes that acquire both germline and somatic mutations within our samples. The detection method for LGRs was validated using droplet digital polymerase chain reaction (ddPCR) assay of commonly investigated LGR genes. In total, 15 659 samples from across 22 cancer types were retained for analysis after filtering. We observed that, in our cohort, the cancer types with the highest proportion of germline LGRs were ovarian cancer (4.7%), renal cell carcinoma (2.5%), breast cancer (2%), glioma (1.8%) and thyroid carcinoma (1.8%). Annotation of detected germline variants revealed several genes-MSH2, FANCA and PMS2-that contain novel LGRs. We observed co-occurrences between germline LGRs in MSH2 and somatic single nucleotide variants/insertion and deletions (SNVs/InDels) in BRCA2, KTM2B, KDM5A, CHD8, and HNF1A. Furthermore, our analysis showed that samples with pathogenic and likely pathogenic germline LGRs tended to also have higher mutational burden, chromosomal instability, and microsatellite instability ratio compared to samples with pathogenic germline SNVs/InDels. In this study, we demonstrated the prevalence of pathogenic germline LGRs beyond breast and ovarian cancer. The profiles of these pathogenic or likely pathogenic alterations will fuel further investigations and highlight new understanding of LGRs across multiple cancer types.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Feminino , Humanos , Rearranjo Gênico/genética , Proteína 2 Homóloga a MutS/genética , Neoplasias Ovarianas/genética , Mutação em Linhagem Germinativa/genética , Genômica , Células Germinativas , Neoplasias da Mama/genética , Proteína 2 de Ligação ao Retinoblastoma/genética
2.
Plant J ; 95(1): 150-167, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29752751

RESUMO

Plant meristem activity depends on accurate execution of transcriptional networks required for establishing optimum functioning of stem cell niches. An Arabidopsis mutant card1-1 (constitutive auxin response with DR5:GFP) that encodes a truncated RPB1 (RNA Polymerase II's largest subunit) with shortened C-terminal domain (CTD) was identified. Phosphorylation of the CTD repeats of RPB1 is coupled to transcription in eukaryotes. Here we uncover that the truncated CTD of RPB1 disturbed cell cycling and enlarged the size of shoot and root meristem. The defects in patterning of root stem cell niche in card1-1 indicates that intact CTD of RPB1 is necessary for fine-tuning the specific expression of genes responsible for cell-fate determination. The gene-edited plants with different CTD length of RPB1, created by CRISPR-CAS9 technology, confirmed that both the full length and the DK-rich tail of RPB1's CTD play roles in the accurate transcription of CYCB1;1 encoding a cell-cycle marker protein in root meristem and hence participate in maintaining root meristem size. Our experiment proves that the intact RPB1 CTD is necessary for stem cell niche maintenance, which is mediated by transcriptional regulation of cell cycling genes.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Ciclo Celular/fisiologia , RNA Polimerases Dirigidas por DNA/fisiologia , Nicho de Células-Tronco/fisiologia , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Edição de Genes , Regulação da Expressão Gênica de Plantas , Meristema/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...