Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biol Direct ; 19(1): 29, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654312

RESUMO

BACKGROUND: Oocyte quality is critical for the mammalian reproduction due to its necessity on fertilization and early development. During aging, the declined oocytes showing with organelle dysfunction and oxidative stress lead to infertility. AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase which is important for energy homeostasis for metabolism. Little is known about the potential relationship between AMPK with oocyte aging. RESULTS: In present study we reported that AMPK was related with low quality of oocytes under post ovulatory aging and the potential mechanism. We showed the altered AMPK level during aging and inhibition of AMPK activity induced mouse oocyte maturation defect. Further analysis indicated that similar with its upstream regulator PKD1, AMPK could reduce ROS level to avoid oxidative stress in oocytes, and this might be due to its regulation on mitochondria function, since loss of AMPK activity induced abnormal distribution, reduced ATP production and mtDNA copy number of mitochondria. Besides, we also found that the ER and Golgi apparatus distribution was aberrant after AMPK inhibition, and enhanced lysosome function was also observed. CONCLUSIONS: Taken together, these data indicated that AMPK is important for the organelle function to reduce oxidative stress during oocyte meiotic maturation.


Assuntos
Proteínas Quinases Ativadas por AMP , Oócitos , Estresse Oxidativo , Animais , Feminino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Senescência Celular , Mitocôndrias/metabolismo , Oócitos/metabolismo , Organelas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Theor Appl Genet ; 137(3): 74, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451289

RESUMO

KEY MESSAGE: Eight selected hotspots related to ear traits were identified from two maize-teosinte populations. Throughout the history of maize cultivation, ear-related traits have been selected. However, little is known about the specific genes involved in shaping these traits from their origins in the wild progenitor, teosinte, to the characteristics observed in modern maize. In this study, five ear traits (kernel row number [KRN], ear length [EL], kernel number per row [KNR], cob diameter [CD], and ear diameter [ED]) were investigated, and eight quantitative trait loci (QTL) hotspots were identified in two maize-teosinte populations. Notably, our findings revealed a significant enrichment of genes showing a selection signature and expressed in the ear in qbdCD1.1, qbdCD5.1, qbpCD2.1, qbdED1.1, qbpEL1.1, qbpEL5.1, qbdKNR1.1, and qbdKNR10.1, suggesting that these eight QTL are selected hotspots involved in shaping the maize ear. By combining the results of the QTL analysis with data from previous genome-wide association study (GWAS) involving two natural panels, we identified eight candidate selected genes related to KRN, KNR, CD, and ED. Among these, considering their expression pattern and sequence variation, Zm00001d025111, encoding a WD40/YVTN protein, was proposed as a positive regulator of KNR. This study presents a framework for understanding the genomic distribution of selected loci crucial in determining ear-related traits.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Zea mays/genética , Genômica , Fenótipo , Locos de Características Quantitativas
3.
PLoS Genet ; 20(2): e1011135, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38315718

RESUMO

Phosphorus (P) deficiency is one of the most critical factors for plant growth and productivity, including its inhibition of lateral root initiation. Auxin response factors (ARFs) play crucial roles in root development via auxin signaling mediated by genetic pathways. In this study, we found that the transcription factor ZmARF1 was associated with low inorganic phosphate (Pi) stress-related traits in maize. This superior root morphology and greater phosphate stress tolerance could be ascribed to the overexpression of ZmARF1. The knock out mutant zmarf1 had shorter primary roots, fewer root tip number, and lower root volume and surface area. Transcriptomic data indicate that ZmLBD1, a direct downstream target gene, is involved in lateral root development, which enhances phosphate starvation tolerance. A transcriptional activation assay revealed that ZmARF1 specifically binds to the GC-box motif in the promoter of ZmLBD1 and activates its expression. Moreover, ZmARF1 positively regulates the expression of ZmPHR1, ZmPHT1;2, and ZmPHO2, which are key transporters of Pi in maize. We propose that ZmARF1 promotes the transcription of ZmLBD1 to modulate lateral root development and Pi-starvation induced (PSI) genes to regulate phosphate mobilization and homeostasis under phosphorus starvation. In addition, ZmERF2 specifically binds to the ABRE motif of the promoter of ZmARF1 and represses its expression. Collectively, the findings of this study revealed that ZmARF1 is a pivotal factor that modulates root development and confers low-Pi stress tolerance through the transcriptional regulation of the biological function of ZmLBD1 and the expression of key Pi transport proteins.


Assuntos
Fosfatos , Zea mays , Fosfatos/metabolismo , Fósforo/metabolismo , Ácidos Indolacéticos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Raízes de Plantas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
J Cell Physiol ; 239(1): 180-192, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992208

RESUMO

Oocyte maturation defect can lead to maternal reproduction disorder. NAMPT is a rate-limiting enzyme in mammalian NAD+ biosynthesis pathway, which can regulate a variety of cellular metabolic processes including glucose metabolism and DNA damage repair. However, the function of NAMPT in porcine oocytes remains unknown. In this study, we showed that NAMPT involved into multiple cellular events during oocyte maturation. NAMPT expressed during all stages of porcine oocyte meiosis, and inhibition of NAMPT activity caused the cumulus expansion and polar body extrusion defects. Mitochondrial dysfunction was observed in NAMPT-deficient porcine oocytes, which showed decreased membrane potential, ATP and mitochondrial DNA content, increased oxidative stress level and apoptosis. We also found that NAMPT was essential for spindle organization and chromosome arrangement based on Ac-tubulin. Moreover, lack of NAMPT activity caused the increase of lipid droplet and affected the imbalance of lipogenesis and lipolysis. In conclusion, our study indicated that lack of NAMPT activity affected porcine oocyte maturation through its effects on mitochondria function, spindle assembly and lipid metabolism.


Assuntos
Metabolismo dos Lipídeos , Mitocôndrias , Nicotinamida Fosforribosiltransferase , Oogênese , Animais , Metabolismo dos Lipídeos/genética , Meiose , Mitocôndrias/metabolismo , Oócitos/metabolismo , Estresse Oxidativo , Suínos , Nicotinamida Fosforribosiltransferase/metabolismo , Polos do Fuso
5.
Int J Biol Macromol ; 258(Pt 1): 128748, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104693

RESUMO

Adsorbents consisting of spherical nanoparticles exhibit superior adsorption performance and hence, have immense potential for various applications. In this study, a tri-aldehyde spherical nanoadsorbent premodification platform (CTNAP), which can be grafted with various amino acids, was synthesized from corn stalk. Subsequently, two all-biomass spherical nanoadsorbents, namely, cellulose/l-lysine (CTNAP-Lys) and cellulose/L-cysteine (CTNAP-Cys), were prepared. The morphologies as well as chemical and crystal structures of the two adsorbents were studied in detail. Notably, the synthesized adsorbents exhibited two important characteristics, namely, a spherical nanoparticle morphology and cellulose II crystal structure, which significantly enhanced their adsorption performance. The mechanism of the adsorption of Cr(VI) onto CTNAP-Lys and that of Cu(II) onto CTNAP-Cys were studied in detail, and the adsorption capacities were determined to be as high as 361.69 (Cr(VI)) and 252.38 mg/g (Cu(II)). Using the proposed strategy, it should be possible to prepare other all-biomass cellulose/amino acid spherical nanomaterials with high functional group density for adsorption, medical, catalytic, analytical chemistry, corrosion, and photochromic applications.


Assuntos
Celulose , Poluentes Químicos da Água , Celulose/química , Aminoácidos , Biomassa , Cromo/química , Cisteína , Adsorção , Poluentes Químicos da Água/química , Cinética , Concentração de Íons de Hidrogênio
6.
Nano Lett ; 24(1): 356-361, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38109180

RESUMO

Analog systems may allow image processing, such as edge detection, with low computational power. However, most demonstrated analog systems, based on either conventional 4-f imaging systems or nanophotonic structures, rely on coherent laser sources for illumination, which significantly restricts their use in routine imaging tasks with ambient, incoherent illumination. Here, we demonstrated a metalens-assisted imaging system that can allow optoelectronic edge detection under ambient illumination conditions. The metalens was designed to generate polarization-dependent optical transfer functions (OTFs), resulting in a synthetic OTF with an isotropic high-pass frequency response after digital subtraction. We integrated the polarization-multiplexed metalens with a polarization camera and experimentally demonstrated single-shot edge detection of indoor and outdoor scenes, including a flying airplane, under ambient sunlight illumination. The proposed system showcased the potential of using polarization multiplexing for the construction of complex optical convolution kernels toward accelerated machine vision tasks such as object detection and classification under ambient illumination.

7.
Proc Natl Acad Sci U S A ; 120(44): e2311057120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37883440

RESUMO

The eukaryotic cytosolic Fe-S protein assembly (CIA) machinery inserts iron-sulfur (Fe-S) clusters into cytosolic and nuclear proteins. In the final maturation step, the Fe-S cluster is transferred to the apo-proteins by the CIA-targeting complex (CTC). However, the molecular recognition determinants of client proteins are unknown. We show that a conserved [LIM]-[DES]-[WF]-COO- tripeptide is present at the C-terminus of more than a quarter of clients or their adaptors. When present, this targeting complex recognition (TCR) motif is necessary and sufficient for binding to the CTC in vitro and for directing Fe-S cluster delivery in vivo. Remarkably, fusion of this TCR signal enables engineering of cluster maturation on a nonnative protein via recruitment of the CIA machinery. Our study advances our understanding of Fe-S protein maturation and paves the way for bioengineering novel pathways containing Fe-S enzymes.


Assuntos
Proteínas Ferro-Enxofre , Humanos , Proteínas Ferro-Enxofre/metabolismo , Citosol/metabolismo , Proteínas Nucleares/metabolismo , Ferro/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
8.
Adv Mater ; : e2305633, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37566788

RESUMO

Oral biofilms, which are also known as dental plaque, are the culprit of a wide range of oral diseases and systemic diseases, thus contributing to serious health risks. The manner of how to achieve good control of oral biofilms has been an increasing public concern. Novel antimicrobial biomaterials with highly controllable fabrication and functionalization have been proven to be promising candidates. However, previous reviews have generally emphasized the physicochemical properties, action mode, and application effectiveness of those biomaterials, whereas insufficient attention has been given to the design rationales tailored to different infection types and application scenarios. To offer guidance for better diversification and functionalization of anti-oral-biofilm biomaterials, this review details the up-to-date design rationales in three aspects: the core strategies in combating oral biofilm, as well as the biomaterials with advanced antibiofilm capacity and multiple functions based on the improvement or combination of the abovementioned antimicrobial strategies. Thereafter, insights on the existing challenges and future improvement of biomaterial-assisted oral biofilm treatments are proposed, hoping to provide a theoretical basis and reference for the subsequent design and application of antibiofilm biomaterials.

9.
bioRxiv ; 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37292740

RESUMO

The eukaryotic cytosolic Fe-S protein assembly (CIA) machinery inserts iron-sulfur (Fe-S) clusters into cytosolic and nuclear proteins. In the final maturation step, the Fe-S cluster is transferred to the apo-proteins by the CIA-targeting complex (CTC). However, the molecular recognition determinants of client proteins are unknown. We show that a conserved [LIM]-[DES]-[WF]-COO- tripeptide present at the C-terminus of clients is necessary and sufficient for binding to the CTC in vitro and directing Fe-S cluster delivery in vivo. Remarkably, fusion of this TCR (target complex recognition) signal enables engineering of cluster maturation on a non-native protein via recruitment of the CIA machinery. Our study significantly advances our understanding of Fe-S protein maturation and paves the way for bioengineering applications.

10.
Theor Appl Genet ; 136(6): 137, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37233855

RESUMO

KEY MESSAGE: This study reported validation and fine mapping of a Fusarium crown rot resistant locus on chromosome arm 6HL in barley using near isogenic lines, transcriptome sequences, and a large near isogenic line-derived population. Fusarium crown rot (FCR), caused by Fusarium pseudograminearum, is a chronic and serious disease affecting cereal production in semi-arid regions globally. The increasing prevalence of this disease in recent years is attributed to the widespread adoption of minimum tillage and stubble retention practices. In the study reported here, we generated eight pairs of near isogenic lines (NILs) targeting a putative QTL (Qcrs.caf-6H) conferring FCR resistance in barley. Assessing the NILs confirmed the large effect of this locus. Aimed to develop markers that can be reliably used in incorporating this resistant allele into breeding programs and identify candidate genes, transcriptomic analyses were conducted against three of the NIL pairs and a large NIL-derived population consisting of 1085 F7 recombinant inbred lines generated. By analyzing the transcriptomic data and the fine mapping population, Qcrs.caf-6H was delineated into an interval of 0.9 cM covering a physical distance of ~ 547 kb. Six markers co-segregating with this locus were developed. Based on differential gene expression and SNP variations between the two isolines among the three NIL pairs, candidate genes underlying the resistance at this locus were detected. These results would improve the efficiency of incorporating the targeted locus into barley breeding programs and facilitate the cloning of causal gene(s) responsible for the resistance.


Assuntos
Fusarium , Hordeum , Locos de Características Quantitativas , Hordeum/genética , Braço , Melhoramento Vegetal , Perfilação da Expressão Gênica , Cromossomos , Doenças das Plantas/genética
11.
Front Plant Sci ; 14: 1144486, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37235013

RESUMO

The total number of spikelets (TSPN) and the number of fertile spikelets (FSPN) affect the final number of grains per spikelet in wheat. This study constructed a high-density genetic map using 55K single nucleotide polymorphism (SNP) arrays from a population of 152 recombinant inbred lines (RIL) from crossing the wheat accessions 10-A and B39. Twenty-four quantitative trait loci (QTLs) for TSPN and 18 QTLs for FSPN were localized based on the phenotype in 10 environments in 2019-2021. Two major QTLs, QTSPN/QFSPN.sicau-2D.4 (34.43-47.43 Mb) and QTSPN/QFSPN.sicau-2D.5(32.97-34.43 Mb), explained 13.97%-45.90% of phenotypic variation. Linked kompetitive allele-specific PCR (KASP) markers further validated these two QTLs and revealed that QTSPN.sicau-2D.4 had less effect on TSPN than QTSPN.sicau-2D.5 in 10-A×BE89 (134 RILs) and 10-A×Chuannong 16 (192 RILs) populations, and one population of Sichuan wheat (233 accessions). The alleles combination haplotype 3 with the allele from 10-A of QTSPN/QFSPN.sicau-2D.5 and the allele from B39 of QTSPN.sicau-2D.4 resulted in the highest number of spikelets. In contrast, the allele from B39 for both loci resulted in the lowest number of spikelets. Using bulk-segregant analysis-exon capture sequencing, six SNP hot spots that included 31 candidate genes were identified in the two QTLs. We identified Ppd-D1a from B39 and Ppd-D1d from 10-A and further analyzed Ppd-D1 variation in wheat. These results identified loci and molecular markers with potential utility for wheat breeding and laid a foundation for further fine mapping and cloning of the two loci.

12.
Theor Appl Genet ; 136(5): 102, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37027036

RESUMO

KEY MESSAGE: This study found that the intergenic circRNAs of wheat were more abundant than those of other plants. More importantly, a circRNA-mediated network associated with tillering was constructed for the first time. Circular RNAs (circRNAs) are a class of endogenous non-coding RNAs with covalently closed circular structures, which play an important role in transcriptional and post-transcriptional regulation. Tiller is an important agronomic trait that determines plant morphological architecture and affects spike number in wheat. However, no studies on the characteristics and functions of circRNAs involved in the regulation of wheat tiller. Here, we performed a genome-wide identification of circRNAs using ribosomal-depleted RNA-seq from wheat tiller of two pairs near-isogenic lines. A total of 686 circRNAs were identified and distributed on 21 chromosomes of wheat, of which 537 were novel circRNAs. Unlike other plants, the majority of these circRNAs (61.8%) were derived from intergenic regions. One circRNA-mediated network associated with tillering was constructed through weighted gene co-expression network analysis, including 323 circRNAs, 117 miRNAs, and 968 mRNAs. GO and pathway enrichment analysis of mRNAs suggested that these circRNAs are involved in cell cycle, ncRNA export from nucleus, developmental process, plant hormone signal transduction, MAPK signaling pathway, RNA degradation. Of these circRNAs, ten circRNAs are associated with known tillering/branching genes in rice or Arabidopsis thaliana, including OsCesA7, EBR1, DTE1, CRD1, LPA1, PAY1, LRK1, OsNR2, OsCCA1, OsBZR1. In summary, we present the first study of the identification and characterization of circRNAs in wheat tiller, and the results suggest these circRNAs associated with tillering could play an important role in wheat tiller formation and development.


Assuntos
Arabidopsis , MicroRNAs , RNA Circular , Triticum/fisiologia , MicroRNAs/genética , RNA Mensageiro/genética , Fenótipo , Arabidopsis/genética
13.
Theor Appl Genet ; 136(5): 101, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37027037

RESUMO

KEY MESSAGE: A novel locus for Fusarium crown rot (FCR) resistance was identified on chromosome 1B at 641.36-645.13 Mb using GWAS and could averagely increase 39.66% of FCR resistance in a biparental population. Fusarium crown rot can cause considerable yield losses. Developing and growing resistance cultivars is one of the most effective approaches for controlling this disease. In this study, 361 Chinese wheat landraces were evaluated for FCR resistance, and 27 with the disease index lower than 30.00 showed potential in wheat breeding programs. Using a genome-wide association study approach, putative quantitative trait loci (QTL) for FCR resistance was identified. A total of 21 putative loci on chromosomes 1A, 1B, 2B, 2D, 3B, 3D, 4B, 5A, 5B, 7A, and 7B were significantly associated with FCR resistance. Among these, a major locus Qfcr.sicau.1B-4 was consistently identified among all the trials on chromosome 1B with the physical regions from 641.36 to 645.13 Mb. A polymorphism kompetitive allele-specific polymerase (KASP) marker was developed and used to validate its effect in an F2:3 population consisting of 136 lines. The results showed the presence of this resistance allele could explain up to 39.66% of phenotypic variance compared to its counterparts. In addition, quantitative real-time polymerase chain reaction showed that two candidate genes of Qfcr.sicau.1B-4 were differently expressed after inoculation. Our study provided useful information for improving FCR resistance in wheat.


Assuntos
Fusarium , Estudo de Associação Genômica Ampla , Mapeamento Cromossômico , Triticum/genética , Melhoramento Vegetal , Resistência à Doença/genética , Doenças das Plantas/genética , Fenótipo
14.
iScience ; 26(4): 106509, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37102151

RESUMO

Cell type-specific expression of the developmental gene is conferred by distinct enhancer elements. Current knowledge about mechanisms in Nkx2-5 transcriptional regulation and its specific roles in multistage heart morphogenesis is limited. We comprehensively interrogate enhancers U1 and U2 in controlling Nkx2-5 transcription during heart development. Serial genomic deletions in mice reveal U1 and U2 function redundantly to confer Nkx2-5 expression at early stages, but U2 instead of U1 supports its expression at later stages. Combined deletions markedly reduce Nkx2-5 dosage as early as E7.5, despite being largely reinstated two days later, displaying heart malformations with precocious differentiation of cardiac progenitors. Cutting-edge low-input chromatin immunoprecipitation sequencing (ChIP-seq) confirmed that not only genomic NKX2-5 occupancy but also its regulated enhancer landscape is mostly disturbed in the double-deletion mouse hearts. Together, we propose a model that the temporal and partially compensatory regulatory function of two enhancers dictates a transcription factor (TF)'s dosage and specificity during development.

15.
Bioorg Chem ; 135: 106508, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37023583

RESUMO

Fungal and viral diseases account for 70-80% of agricultural production losses caused by microbial diseases. Synthetic fungicides and antiviral agents have been used to treat plant diseases caused by plant pathogenic fungi and viruses, but their use has been criticized due to their adverse side effects. As alternative strategies, natural fungicides and antiviral agents have attracted many researchers' interest in recent years. Herein, we designed and synthesized a series of novel polycarpine simplified analogues. Antiviral activity research against tobacco mosaic virus (TMV) revealed that most of the designed compounds have good antiviral activities. The virucidal activities of 4, 6d, 6f, 6h, and 8c are higher than that of polycarpine and similar to that of ningnanmycin. The structure simplified compound 8c was selected for further antiviral mechanism research which showed that compound 8c could inhibit the formation of 20S protein discs by acting on TMV coat protein. These compounds also displayed broad-spectrum fungicidal activities against 7 kinds of plant fungi. This work lays the foundation for the application of polycarpine simplified analogues in crop protection.


Assuntos
Fungicidas Industriais , Vírus do Mosaico do Tabaco , Antivirais/química , Fungicidas Industriais/química , Relação Estrutura-Atividade , Fungos , Desenho de Fármacos
16.
Plant Phenomics ; 5: 0024, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36930773

RESUMO

Plant trichomes are epidermal structures with a wide variety of functions in plant development and stress responses. Although the functional importance of trichomes has been realized, the tedious and time-consuming manual phenotyping process greatly limits the research progress of trichome gene cloning. Currently, there are no fully automated methods for identifying maize trichomes. We introduce TrichomeYOLO, an automated trichome counting and measuring method that uses a deep convolutional neural network, to identify the density and length of maize trichomes from scanning electron microscopy images. Our network achieved 92.1% identification accuracy on scanning electron microscopy micrographs of maize leaves, which is much better performed than the other 5 currently mainstream object detection models, Faster R-CNN, YOLOv3, YOLOv5, DETR, and Cascade R-CNN. We applied TrichomeYOLO to investigate trichome variations in a natural population of maize and achieved robust trichome identification. Our method and the pretrained model are open access in Github (https://github.com/yaober/trichomecounter). We believe TrichomeYOLO will help make efficient trichome identification and help facilitate researches on maize trichomes.

17.
Plant Dis ; 107(2): 443-449, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35802018

RESUMO

Stripe rust is a destructive disease that affects plant growth and substantially reduces wheat yields globally. An economically and environmentally friendly way to control this disease is to use resistant cultivars. 'N2496' is a synthetic hexaploid wheat derivative that exhibits high resistance and could serve as a source of resistance for breeding programs. We developed three recombinant inbred lines (RILs) populations by crossing 'N2496' with common wheat cultivars 'CN16', 'CM107', and 'MM37'. Stripe rust responses were evaluated in all three populations using a mixture of current predominant Chinese Puccinia striiformis f. sp. tritici races. A stripe rust resistance quantitative trait locus (QTL) in the 'N2496'/'CN16' RIL population was mapped on chromosome arm 6BL at 519.35 to 526.55 Mb using bulked segregant RNA sequencing. The population was genotyped using simple sequence repeats and kompetitive allele-specific polymerase (KASP) markers. The QTL QYr.sicau-6B was localized to a 1.19-cM interval flanked by markers KASP-TXK-10 and KASP-TXK-6. The genetic effect of QYr.sicau-6B was validated in the 'N2496' × 'CM107' and 'N2496' × 'MM37' RILs populations and explained up to 63.16% of the phenotypic variation. RNA sequencing and quantitative real-time polymerase chain reaction identified two differentially expressed candidate genes in the physical interval of QYr.sicau-6B.


Assuntos
Basidiomycota , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Triticum/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Melhoramento Vegetal , Basidiomycota/fisiologia
18.
Sustain Cities Soc ; 89: 104314, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36438675

RESUMO

Human mobility, as a fundamental requirement of everyday life, has been most directly impacted during the COVID-19 pandemic. Existing studies have revealed its ensuing changes. However, its resilience, which is defined as people's ability to resist such impact and maintain their normal mobility, still remains unclear. Such resilience reveals people's response capabilities to the pandemic and quantifying it can help us better understand the interplay between them. Herein, we introduced an integrated framework to quantify the resilience of human mobility to COVID-19 based on its change process. Taking Beijing as a case study, the resilience of different mobility characteristics among different population groups, and under different waves of COVID-19, were compared. Overall, the mobility range and diversity were found to be less resilient than decisions on whether to move. Females consistently exhibited lower resilience than males; middle-aged people exhibited the lowest resilience under the first wave of COVID-19 while older adult's resilience became the lowest during the COVID-19 rebound. With the refinement of pandemic-control measures, human mobility resilience was enhanced. These findings reveal heterogeneities and variations in people's response capabilities to the pandemic, which can help formulate targeted and flexible policies, and thereby promote sustainable and resilient urban management.

19.
Plant Dis ; 107(4): 1151-1158, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36306443

RESUMO

Fusarium crown rot (FCR) is a fungal disease and severely decreases wheat production worldwide. Tibetan semiwild wheat, Yunnan hulled wheat, Xinjiang rice wheat, and Sichuan white wheat are four subspecies landraces endemic to western China and have rich genetic diversity in response to biotic and abiotic stresses. Here, a natural population, including 209 wheat accessions of four subspecies, was evaluated for FCR resistance. he genome-wide association study was performed using the wheat 55K single-nucleotide polymorphisms (SNPs). The results showed that the disease index (DI) ranged from 16.88 to 85.00, while six accessions showed moderate to high resistance (DI ≤ 30). Genome-wide association analysis identified 10 stable loci for FCR resistance on chromosomes 1B, 2A (5), 5A, 7A, 7B, and 7D. Four major loci-Qfcr.sicau.2A-1, Qfcr.sicau.2A-3, Qfcr.sicau.5A, and Qfcr.sicau.7D-explained 6.01 to 14.48, 9.76 to 13.11, 8.19 to 10.29, and 5.76 to 12.21% phenotypic variation, respectively. Quantitative trait loci (QTL) pyramiding analysis of these four major loci revealed that accessions with four resistance haplotypes could significantly decrease FCR severity by 9.35 to 31.61% compared with those without or with one to three resistance haplotypes. One kompetitive allele-specific PCR (KASP) marker each was successfully developed for Qfcr.sicau.2A-1 and Qfcr.sicau.7D. The KASP marker of Qfcr.sicau.2A-1 was used to genotype in an F6 recombinant inbred line population. The result showed that the lines carrying the resistance allele reduced FCR severity by 17.78%, demonstrating the importance of Qfcr.sicau.2A-1 in resistance breeding programs. Our findings provide valuable QTL and breeder-friendly PCR-based markers for applications in FCR resistance breeding programs. Our study also proved that gene pyramiding of major loci could enhance FCR resistance.


Assuntos
Fusarium , Mapeamento Cromossômico , Fusarium/fisiologia , Triticum/genética , Triticum/microbiologia , Estudo de Associação Genômica Ampla , China , Melhoramento Vegetal
20.
Imeta ; 2(2): e99, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-38868440

RESUMO

Schizophrenia (SZ) places a tremendous burden on public health as one of the leading causes of disability and death. SZ patients are more prone to developing obesity than the general population from the clinical practice. The development of obesity frequently causes poor psychiatric outcomes in SZ patients. In turn, maternal obesity during pregnancy has been associated with an increased risk of SZ in offspring, suggesting that these two disorders may have shared neuropathological mechanisms. The gut microbiota is well known to serve as a major regulator of bidirectional interactions between the central nervous system and the gastrointestinal tract. It also plays a critical role in maintaining physical and mental health in humans. Recent studies have shown that the dysbiosis of gut microbiota is intimately associated with the onset of SZ and obesity through shared pathophysiological mechanisms, particularly the stimulation of immune inflammation. Therefore, gut microbiota may serve as a common biological basis for the etiology in both SZ and obesity, and the perturbed gut-brain axis may therefore account for the high prevalence of obesity in patients with SZ. On the basis of these findings, this review provides updated perspectives and intervention approaches on the etiology, prevention, and management of obesity in SZ patients by summarizing the recent findings on the role of gut microbiota in the pathogenesis of SZ and obesity, highlighting the role of gut-derived inflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...