Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 285: 117137, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39353374

RESUMO

Deoxynivalenol (DON) is a secondary metabolite of Fusarium fungi and belonged to trichothecenes, and it widely presents in various food commodities. Previous studies have highlighted its potent toxicity, adversely affecting the growth, development, and reproductive in both humans and animals. However, the potential impact of DON on porcine oocyte organelles remains elusive. In present study, we delved into the toxic effects of DON on mitochondria, endoplasmic reticulum, Golgi during the porcine oocyte maturation. Our findings revealed that DON exposure significantly impeded granulosa cell diffusion and the expulsion of the first polar body. Additionally, mitochondrial fluorescence intensity and membrane potential underwent notable alterations under DON exposure. Notably, lysosomal fluorescence intensity decreased significantly, suggesting protein degradation and potential autophagy, which was further corroborated by the enhanced fluorescence intensity of LC3. Furthermore, endoplasmic reticulum fluorescence intensity declined, and DON exposure elevated endoplasmic reticulum stress levels, evident from the upregulated expression of GRP78. Concurrently, we observed disruption in the fusiform cortex distribution of the Golgi apparatus, characterized by reduced Golgi apparatus fluorescence intensity and GM130 expression. Collectively, our results indicate that DON exposure profoundly affects the fundamental functions of porcine oocyte organelles during meiosis and maturation.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39167800

RESUMO

Enhancers are DNA sequences that can strengthen transcription initiation. However, the global identification of plant enhancers is complicated due to uncertainty in the distance and orientation of enhancers, especially in species with large genomes. In this study, we performed self-transcribing active regulatory region sequencing (STARR-seq) for the first time to identify enhancers across the barley genome. A total of 7323 enhancers were successfully identified, and among 45 randomly selected enhancers, over 75% were effective as validated by a dual-luciferase reporter assay system in the lower epidermis of tobacco leaves. Interestingly, up to 53.5% of the barley enhancers were repetitive sequences, especially transposable elements (TEs), thus reinforcing the vital role of repetitive enhancers in gene expression. Both the common active mark H3K4me3 and repressive mark H3K27me3 were abundant among the barley STARR-seq enhancers. In addition, the functional range of barley STARR-seq enhancers seemed much broader than that of rice or maize and extended to ±100 kb of the gene body, and this finding was consistent with the high expression levels of genes in the genome. This study specifically depicts the unique features of barley enhancers and provides available barley enhancers for further utilization.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica de Plantas , Hordeum , Hordeum/genética , Hordeum/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica de Plantas/genética , Histonas/metabolismo , Histonas/genética , Elementos de DNA Transponíveis/genética , Genoma de Planta/genética , Sequências Repetitivas de Ácido Nucleico/genética , Análise de Sequência de DNA/métodos
3.
PLoS One ; 19(8): e0307882, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39110745

RESUMO

The research analyzed the effect of weekly training plans, physical training frequency, AI-powered coaching systems, virtual reality (VR) training environments, wearable sensors on developing technical tennis skills, with and personalized learning as a mediator. It adopted a quantitative survey method, using primary data from 374 young tennis players. The model fitness was evaluated using confirmatory factor analysis (CFA), while the hypotheses were evaluated using structural equation modeling (SEM). The model fitness was confirmed through CFA, demonstrating high fit indices: CFI = 0.924, TLI = 0.913, IFI = 0.924, RMSEA = 0.057, and SRMR = 0.041, indicating a robust model fit. Hypotheses testing revealed that physical training frequency (ß = 0.198, p = 0.000), AI-powered coaching systems (ß = 0.349, p = 0.000), virtual reality training environments (ß = 0.476, p = 0.000), and wearable sensors (ß = 0.171, p = 0.000) significantly influenced technical skills acquisition. In contrast, the weekly training plan (ß = 0.024, p = 0.834) and personalized learning (ß = -0.045, p = 0.81) did not have a significant effect. Mediation analysis revealed that personalized learning was not a significant mediator between training methods/technologies and acquiring technical abilities. The results revealed that physical training frequency, AI-powered coaching systems, virtual reality training environments, and wearable sensors significantly influenced technical skills acquisition. However, personalized learning did not have a significant mediation effect. The study recommended that young tennis players' organizations and stakeholders consider investing in emerging technologies and training methods. Effective training should be given to coaches on effectively integrating emerging technologies into coaching regimens and practices.


Assuntos
Tênis , Humanos , Tênis/educação , Masculino , Feminino , Adolescente , Realidade Virtual , Criança , Desempenho Atlético/fisiologia , Aprendizagem , Dispositivos Eletrônicos Vestíveis
4.
BMC Genomics ; 25(1): 675, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977976

RESUMO

BACKGROUND: The number of spikelets per spike is a key trait that affects the yield of bread wheat (Triticum aestivum L.). Identification of the QTL for spikelets per spike and its genetic effects that could be used in molecular assistant breeding in the future. RESULTS: In this study, four recombinant inbred line (RIL) populations were generated and used, having YuPi branching wheat (YP), with Supernumerary Spikelets (SS) phenotype, as a common parent. QTL (QSS.sicau-2 A and QSS.sicau-2D) related to SS trait were mapped on chromosomes 2 A and 2D through bulked segregant exome sequencing (BSE-Seq). Fourteen molecular markers were further developed within the localization interval, and QSS.sicau-2 A was narrowed to 3.0 cM covering 7.6 Mb physical region of the reference genome, explaining 13.7 - 15.9% the phenotypic variance. Similarly, the QSS.sicau-2D was narrowed to 1.8 cM covering 2.4 Mb physical region of the reference genome, and it explained 27.4 - 32.9% the phenotypic variance. These two QTL were validated in three different genetic backgrounds using the linked markers. QSS.sicau-2 A was identified as WFZP-A, and QSS.sicau-2D was identified a novel locus, different to the previously identified WFZP-D. Based on the gene expression patterns, gene annotation and sequence analysis, TraesCS2D03G0260700 was predicted to be a potential candidate gene for QSS.sicau-2D. CONCLUSION: Two significant QTL for SS, namely QSS.sicau-2 A and QSS.sicau-2D were identified in multiple environments were identified and their effect in diverse genetic populations was assessed. QSS.sicau-2D is a novel QTL associated with the SS trait, with TraesCS2D03G0260700 predicted as its candidate gene.


Assuntos
Mapeamento Cromossômico , Fenótipo , Locos de Características Quantitativas , Triticum , Triticum/genética , Cromossomos de Plantas/genética , Estudos de Associação Genética , Genes de Plantas
5.
Nat Commun ; 15(1): 6362, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39069566

RESUMO

Autonomic nervous system disorders play a pivotal role in the pathophysiology of cardiovascular diseases. Regulating it is essential for preventing and treating acute ventricular arrhythmias (VAs). Photothermal neuromodulation is a nonimplanted technique, but the response temperature ranges of transient receptor potential vanilloid 1 (TRPV1) and TWIK-related K+ Channel 1 (TREK1) exhibit differences while being closely aligned, and the acute nature of VAs require that it must be rapid and precise. However, the low photothermal conversion efficiency (PCE) still poses limitations in achieving rapid and precise treatment. Here, we achieve a nearly perfect blackbody absorption and a high PCE in the second near infrared (NIR-II) window (73.7% at 1064 nm) via a Pt nanoparticle shell (PtNP-shell). By precisely manipulating the photothermal effect, we successfully achieve rapid and precise multimodal neuromodulation encompassing neural activation (41.0-42.9 °C) and inhibition (45.0-46.9 °C) in a male canine model. The NIR-II photothermal modulation additionally achieves multimodal reversible autonomic modulation and confers protection against acute VAs associated with myocardial ischemia and reperfusion injury in interventional therapy.


Assuntos
Arritmias Cardíacas , Raios Infravermelhos , Animais , Arritmias Cardíacas/terapia , Cães , Masculino , Raios Infravermelhos/uso terapêutico , Platina/química , Nanopartículas Metálicas/química , Terapia Fototérmica/métodos , Modelos Animais de Doenças
6.
Schizophr Res ; 270: 325-338, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964078

RESUMO

Emerging evidence indicates that gut microbial dysbiosis is associated with the development of antipsychotic-induced weight gain in schizophrenia (SZ). However, the exact taxonomic composition and functionality that constitute the "obesogenic" microbial profile remain elusive. Our retrospective survey identified two groups of the SZ population separated by BMI, with 1/3 of patients developing overweight/obesity after chronic antipsychotic treatment. Based on multi-omics analysis, we observed altered gut microbiota in SZ patients with overweight/obesity, characterized by a reduction in several beneficial bacteria genera, including Bacteroides, Parabacteroides, Akkermansia, and Clostridium. This microbial dysbiosis was accompanied by disrupted energy expenditure and nutritional metabolism, worsened metabolic indices, and reduced levels of beneficial metabolites, e.g. indole-3-carboxylic acid and propionic acid. Moreover, leveraging data from first-episode drug-naïve schizophrenia (FSZ) patients at one-month and one-year follow-up, both artificial neural network and random forest classifier-based prediction models demonstrated a strong ability of microbial profiles to predict antipsychotic-induced weight gain. Importantly, FSZ patients with higher relative abundance of Parabacteria distasonis were less susceptible to antipsychotic-induced weight gain. Thus, gut microbiota could serve as a noninvasive approach to predict antipsychotic-induced weight gain, guiding clinical antipsychotics administration and developing novel therapeutic strategies for weight management in SZ.


Assuntos
Antipsicóticos , Disbiose , Microbioma Gastrointestinal , Esquizofrenia , Aumento de Peso , Humanos , Esquizofrenia/tratamento farmacológico , Esquizofrenia/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Antipsicóticos/efeitos adversos , Antipsicóticos/farmacologia , Adulto , Masculino , Feminino , Aumento de Peso/efeitos dos fármacos , Disbiose/induzido quimicamente , Disbiose/microbiologia , Estudos Retrospectivos , Obesidade/induzido quimicamente , Obesidade/microbiologia , Adulto Jovem , Pessoa de Meia-Idade , Sobrepeso/induzido quimicamente , Sobrepeso/microbiologia , Multiômica
7.
Nat Methods ; 21(9): 1624-1633, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39025969

RESUMO

Studies of molecular and cellular functions of small-molecule inhibitors in cancer treatment, eliciting effects by targeting genome and epigenome associated proteins, requires measurement of drug-target engagement in single-cell resolution. Here we present EpiChem for in situ single-cell joint mapping of small molecules and multimodal epigenomic landscape. We demonstrate single-cell co-assays of three small molecules together with histone modifications, chromatin accessibility or target proteins in human colorectal cancer (CRC) organoids. Integrated multimodal analysis reveals diverse drug interactions in the context of chromatin states within heterogeneous CRC organoids. We further reveal drug genomic binding dynamics and adaptive epigenome across cell types after small-molecule drug treatment in CRC organoids. This method provides a unique tool to exploit the mechanisms of cell type-specific drug actions.


Assuntos
Cromatina , Neoplasias Colorretais , Epigenoma , Organoides , Análise de Célula Única , Humanos , Análise de Célula Única/métodos , Cromatina/metabolismo , Cromatina/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Organoides/metabolismo , Epigenômica/métodos , Antineoplásicos/farmacologia , Histonas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia
8.
Biol Direct ; 19(1): 29, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654312

RESUMO

BACKGROUND: Oocyte quality is critical for the mammalian reproduction due to its necessity on fertilization and early development. During aging, the declined oocytes showing with organelle dysfunction and oxidative stress lead to infertility. AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase which is important for energy homeostasis for metabolism. Little is known about the potential relationship between AMPK with oocyte aging. RESULTS: In present study we reported that AMPK was related with low quality of oocytes under post ovulatory aging and the potential mechanism. We showed the altered AMPK level during aging and inhibition of AMPK activity induced mouse oocyte maturation defect. Further analysis indicated that similar with its upstream regulator PKD1, AMPK could reduce ROS level to avoid oxidative stress in oocytes, and this might be due to its regulation on mitochondria function, since loss of AMPK activity induced abnormal distribution, reduced ATP production and mtDNA copy number of mitochondria. Besides, we also found that the ER and Golgi apparatus distribution was aberrant after AMPK inhibition, and enhanced lysosome function was also observed. CONCLUSIONS: Taken together, these data indicated that AMPK is important for the organelle function to reduce oxidative stress during oocyte meiotic maturation.


Assuntos
Proteínas Quinases Ativadas por AMP , Oócitos , Estresse Oxidativo , Animais , Feminino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Senescência Celular , Mitocôndrias/metabolismo , Oócitos/metabolismo , Organelas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
9.
Theor Appl Genet ; 137(3): 74, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451289

RESUMO

KEY MESSAGE: Eight selected hotspots related to ear traits were identified from two maize-teosinte populations. Throughout the history of maize cultivation, ear-related traits have been selected. However, little is known about the specific genes involved in shaping these traits from their origins in the wild progenitor, teosinte, to the characteristics observed in modern maize. In this study, five ear traits (kernel row number [KRN], ear length [EL], kernel number per row [KNR], cob diameter [CD], and ear diameter [ED]) were investigated, and eight quantitative trait loci (QTL) hotspots were identified in two maize-teosinte populations. Notably, our findings revealed a significant enrichment of genes showing a selection signature and expressed in the ear in qbdCD1.1, qbdCD5.1, qbpCD2.1, qbdED1.1, qbpEL1.1, qbpEL5.1, qbdKNR1.1, and qbdKNR10.1, suggesting that these eight QTL are selected hotspots involved in shaping the maize ear. By combining the results of the QTL analysis with data from previous genome-wide association study (GWAS) involving two natural panels, we identified eight candidate selected genes related to KRN, KNR, CD, and ED. Among these, considering their expression pattern and sequence variation, Zm00001d025111, encoding a WD40/YVTN protein, was proposed as a positive regulator of KNR. This study presents a framework for understanding the genomic distribution of selected loci crucial in determining ear-related traits.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Zea mays/genética , Genômica , Fenótipo , Locos de Características Quantitativas
10.
PLoS Genet ; 20(2): e1011135, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38315718

RESUMO

Phosphorus (P) deficiency is one of the most critical factors for plant growth and productivity, including its inhibition of lateral root initiation. Auxin response factors (ARFs) play crucial roles in root development via auxin signaling mediated by genetic pathways. In this study, we found that the transcription factor ZmARF1 was associated with low inorganic phosphate (Pi) stress-related traits in maize. This superior root morphology and greater phosphate stress tolerance could be ascribed to the overexpression of ZmARF1. The knock out mutant zmarf1 had shorter primary roots, fewer root tip number, and lower root volume and surface area. Transcriptomic data indicate that ZmLBD1, a direct downstream target gene, is involved in lateral root development, which enhances phosphate starvation tolerance. A transcriptional activation assay revealed that ZmARF1 specifically binds to the GC-box motif in the promoter of ZmLBD1 and activates its expression. Moreover, ZmARF1 positively regulates the expression of ZmPHR1, ZmPHT1;2, and ZmPHO2, which are key transporters of Pi in maize. We propose that ZmARF1 promotes the transcription of ZmLBD1 to modulate lateral root development and Pi-starvation induced (PSI) genes to regulate phosphate mobilization and homeostasis under phosphorus starvation. In addition, ZmERF2 specifically binds to the ABRE motif of the promoter of ZmARF1 and represses its expression. Collectively, the findings of this study revealed that ZmARF1 is a pivotal factor that modulates root development and confers low-Pi stress tolerance through the transcriptional regulation of the biological function of ZmLBD1 and the expression of key Pi transport proteins.


Assuntos
Fosfatos , Zea mays , Fosfatos/metabolismo , Fósforo/metabolismo , Ácidos Indolacéticos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Raízes de Plantas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
J Cell Physiol ; 239(1): 180-192, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992208

RESUMO

Oocyte maturation defect can lead to maternal reproduction disorder. NAMPT is a rate-limiting enzyme in mammalian NAD+ biosynthesis pathway, which can regulate a variety of cellular metabolic processes including glucose metabolism and DNA damage repair. However, the function of NAMPT in porcine oocytes remains unknown. In this study, we showed that NAMPT involved into multiple cellular events during oocyte maturation. NAMPT expressed during all stages of porcine oocyte meiosis, and inhibition of NAMPT activity caused the cumulus expansion and polar body extrusion defects. Mitochondrial dysfunction was observed in NAMPT-deficient porcine oocytes, which showed decreased membrane potential, ATP and mitochondrial DNA content, increased oxidative stress level and apoptosis. We also found that NAMPT was essential for spindle organization and chromosome arrangement based on Ac-tubulin. Moreover, lack of NAMPT activity caused the increase of lipid droplet and affected the imbalance of lipogenesis and lipolysis. In conclusion, our study indicated that lack of NAMPT activity affected porcine oocyte maturation through its effects on mitochondria function, spindle assembly and lipid metabolism.


Assuntos
Metabolismo dos Lipídeos , Mitocôndrias , Nicotinamida Fosforribosiltransferase , Oogênese , Animais , Metabolismo dos Lipídeos/genética , Meiose , Mitocôndrias/metabolismo , Oócitos/metabolismo , Estresse Oxidativo , Suínos , Nicotinamida Fosforribosiltransferase/metabolismo , Polos do Fuso
12.
Int J Biol Macromol ; 258(Pt 1): 128748, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104693

RESUMO

Adsorbents consisting of spherical nanoparticles exhibit superior adsorption performance and hence, have immense potential for various applications. In this study, a tri-aldehyde spherical nanoadsorbent premodification platform (CTNAP), which can be grafted with various amino acids, was synthesized from corn stalk. Subsequently, two all-biomass spherical nanoadsorbents, namely, cellulose/l-lysine (CTNAP-Lys) and cellulose/L-cysteine (CTNAP-Cys), were prepared. The morphologies as well as chemical and crystal structures of the two adsorbents were studied in detail. Notably, the synthesized adsorbents exhibited two important characteristics, namely, a spherical nanoparticle morphology and cellulose II crystal structure, which significantly enhanced their adsorption performance. The mechanism of the adsorption of Cr(VI) onto CTNAP-Lys and that of Cu(II) onto CTNAP-Cys were studied in detail, and the adsorption capacities were determined to be as high as 361.69 (Cr(VI)) and 252.38 mg/g (Cu(II)). Using the proposed strategy, it should be possible to prepare other all-biomass cellulose/amino acid spherical nanomaterials with high functional group density for adsorption, medical, catalytic, analytical chemistry, corrosion, and photochromic applications.


Assuntos
Celulose , Poluentes Químicos da Água , Celulose/química , Aminoácidos , Biomassa , Cromo/química , Cisteína , Adsorção , Poluentes Químicos da Água/química , Cinética , Concentração de Íons de Hidrogênio
13.
Nano Lett ; 24(1): 356-361, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38109180

RESUMO

Analog systems may allow image processing, such as edge detection, with low computational power. However, most demonstrated analog systems, based on either conventional 4-f imaging systems or nanophotonic structures, rely on coherent laser sources for illumination, which significantly restricts their use in routine imaging tasks with ambient, incoherent illumination. Here, we demonstrated a metalens-assisted imaging system that can allow optoelectronic edge detection under ambient illumination conditions. The metalens was designed to generate polarization-dependent optical transfer functions (OTFs), resulting in a synthetic OTF with an isotropic high-pass frequency response after digital subtraction. We integrated the polarization-multiplexed metalens with a polarization camera and experimentally demonstrated single-shot edge detection of indoor and outdoor scenes, including a flying airplane, under ambient sunlight illumination. The proposed system showcased the potential of using polarization multiplexing for the construction of complex optical convolution kernels toward accelerated machine vision tasks such as object detection and classification under ambient illumination.

14.
Proc Natl Acad Sci U S A ; 120(44): e2311057120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37883440

RESUMO

The eukaryotic cytosolic Fe-S protein assembly (CIA) machinery inserts iron-sulfur (Fe-S) clusters into cytosolic and nuclear proteins. In the final maturation step, the Fe-S cluster is transferred to the apo-proteins by the CIA-targeting complex (CTC). However, the molecular recognition determinants of client proteins are unknown. We show that a conserved [LIM]-[DES]-[WF]-COO- tripeptide is present at the C-terminus of more than a quarter of clients or their adaptors. When present, this targeting complex recognition (TCR) motif is necessary and sufficient for binding to the CTC in vitro and for directing Fe-S cluster delivery in vivo. Remarkably, fusion of this TCR signal enables engineering of cluster maturation on a nonnative protein via recruitment of the CIA machinery. Our study advances our understanding of Fe-S protein maturation and paves the way for bioengineering novel pathways containing Fe-S enzymes.


Assuntos
Proteínas Ferro-Enxofre , Humanos , Proteínas Ferro-Enxofre/metabolismo , Citosol/metabolismo , Proteínas Nucleares/metabolismo , Ferro/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
15.
Adv Mater ; : e2305633, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37566788

RESUMO

Oral biofilms, which are also known as dental plaque, are the culprit of a wide range of oral diseases and systemic diseases, thus contributing to serious health risks. The manner of how to achieve good control of oral biofilms has been an increasing public concern. Novel antimicrobial biomaterials with highly controllable fabrication and functionalization have been proven to be promising candidates. However, previous reviews have generally emphasized the physicochemical properties, action mode, and application effectiveness of those biomaterials, whereas insufficient attention has been given to the design rationales tailored to different infection types and application scenarios. To offer guidance for better diversification and functionalization of anti-oral-biofilm biomaterials, this review details the up-to-date design rationales in three aspects: the core strategies in combating oral biofilm, as well as the biomaterials with advanced antibiofilm capacity and multiple functions based on the improvement or combination of the abovementioned antimicrobial strategies. Thereafter, insights on the existing challenges and future improvement of biomaterial-assisted oral biofilm treatments are proposed, hoping to provide a theoretical basis and reference for the subsequent design and application of antibiofilm biomaterials.

16.
bioRxiv ; 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37292740

RESUMO

The eukaryotic cytosolic Fe-S protein assembly (CIA) machinery inserts iron-sulfur (Fe-S) clusters into cytosolic and nuclear proteins. In the final maturation step, the Fe-S cluster is transferred to the apo-proteins by the CIA-targeting complex (CTC). However, the molecular recognition determinants of client proteins are unknown. We show that a conserved [LIM]-[DES]-[WF]-COO- tripeptide present at the C-terminus of clients is necessary and sufficient for binding to the CTC in vitro and directing Fe-S cluster delivery in vivo. Remarkably, fusion of this TCR (target complex recognition) signal enables engineering of cluster maturation on a non-native protein via recruitment of the CIA machinery. Our study significantly advances our understanding of Fe-S protein maturation and paves the way for bioengineering applications.

17.
Theor Appl Genet ; 136(6): 137, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37233855

RESUMO

KEY MESSAGE: This study reported validation and fine mapping of a Fusarium crown rot resistant locus on chromosome arm 6HL in barley using near isogenic lines, transcriptome sequences, and a large near isogenic line-derived population. Fusarium crown rot (FCR), caused by Fusarium pseudograminearum, is a chronic and serious disease affecting cereal production in semi-arid regions globally. The increasing prevalence of this disease in recent years is attributed to the widespread adoption of minimum tillage and stubble retention practices. In the study reported here, we generated eight pairs of near isogenic lines (NILs) targeting a putative QTL (Qcrs.caf-6H) conferring FCR resistance in barley. Assessing the NILs confirmed the large effect of this locus. Aimed to develop markers that can be reliably used in incorporating this resistant allele into breeding programs and identify candidate genes, transcriptomic analyses were conducted against three of the NIL pairs and a large NIL-derived population consisting of 1085 F7 recombinant inbred lines generated. By analyzing the transcriptomic data and the fine mapping population, Qcrs.caf-6H was delineated into an interval of 0.9 cM covering a physical distance of ~ 547 kb. Six markers co-segregating with this locus were developed. Based on differential gene expression and SNP variations between the two isolines among the three NIL pairs, candidate genes underlying the resistance at this locus were detected. These results would improve the efficiency of incorporating the targeted locus into barley breeding programs and facilitate the cloning of causal gene(s) responsible for the resistance.


Assuntos
Fusarium , Hordeum , Locos de Características Quantitativas , Hordeum/genética , Braço , Melhoramento Vegetal , Perfilação da Expressão Gênica , Cromossomos , Doenças das Plantas/genética
18.
Front Plant Sci ; 14: 1144486, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37235013

RESUMO

The total number of spikelets (TSPN) and the number of fertile spikelets (FSPN) affect the final number of grains per spikelet in wheat. This study constructed a high-density genetic map using 55K single nucleotide polymorphism (SNP) arrays from a population of 152 recombinant inbred lines (RIL) from crossing the wheat accessions 10-A and B39. Twenty-four quantitative trait loci (QTLs) for TSPN and 18 QTLs for FSPN were localized based on the phenotype in 10 environments in 2019-2021. Two major QTLs, QTSPN/QFSPN.sicau-2D.4 (34.43-47.43 Mb) and QTSPN/QFSPN.sicau-2D.5(32.97-34.43 Mb), explained 13.97%-45.90% of phenotypic variation. Linked kompetitive allele-specific PCR (KASP) markers further validated these two QTLs and revealed that QTSPN.sicau-2D.4 had less effect on TSPN than QTSPN.sicau-2D.5 in 10-A×BE89 (134 RILs) and 10-A×Chuannong 16 (192 RILs) populations, and one population of Sichuan wheat (233 accessions). The alleles combination haplotype 3 with the allele from 10-A of QTSPN/QFSPN.sicau-2D.5 and the allele from B39 of QTSPN.sicau-2D.4 resulted in the highest number of spikelets. In contrast, the allele from B39 for both loci resulted in the lowest number of spikelets. Using bulk-segregant analysis-exon capture sequencing, six SNP hot spots that included 31 candidate genes were identified in the two QTLs. We identified Ppd-D1a from B39 and Ppd-D1d from 10-A and further analyzed Ppd-D1 variation in wheat. These results identified loci and molecular markers with potential utility for wheat breeding and laid a foundation for further fine mapping and cloning of the two loci.

19.
Theor Appl Genet ; 136(5): 102, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37027036

RESUMO

KEY MESSAGE: This study found that the intergenic circRNAs of wheat were more abundant than those of other plants. More importantly, a circRNA-mediated network associated with tillering was constructed for the first time. Circular RNAs (circRNAs) are a class of endogenous non-coding RNAs with covalently closed circular structures, which play an important role in transcriptional and post-transcriptional regulation. Tiller is an important agronomic trait that determines plant morphological architecture and affects spike number in wheat. However, no studies on the characteristics and functions of circRNAs involved in the regulation of wheat tiller. Here, we performed a genome-wide identification of circRNAs using ribosomal-depleted RNA-seq from wheat tiller of two pairs near-isogenic lines. A total of 686 circRNAs were identified and distributed on 21 chromosomes of wheat, of which 537 were novel circRNAs. Unlike other plants, the majority of these circRNAs (61.8%) were derived from intergenic regions. One circRNA-mediated network associated with tillering was constructed through weighted gene co-expression network analysis, including 323 circRNAs, 117 miRNAs, and 968 mRNAs. GO and pathway enrichment analysis of mRNAs suggested that these circRNAs are involved in cell cycle, ncRNA export from nucleus, developmental process, plant hormone signal transduction, MAPK signaling pathway, RNA degradation. Of these circRNAs, ten circRNAs are associated with known tillering/branching genes in rice or Arabidopsis thaliana, including OsCesA7, EBR1, DTE1, CRD1, LPA1, PAY1, LRK1, OsNR2, OsCCA1, OsBZR1. In summary, we present the first study of the identification and characterization of circRNAs in wheat tiller, and the results suggest these circRNAs associated with tillering could play an important role in wheat tiller formation and development.


Assuntos
Arabidopsis , MicroRNAs , RNA Circular , Triticum/fisiologia , MicroRNAs/genética , RNA Mensageiro/genética , Fenótipo , Arabidopsis/genética
20.
Theor Appl Genet ; 136(5): 101, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37027037

RESUMO

KEY MESSAGE: A novel locus for Fusarium crown rot (FCR) resistance was identified on chromosome 1B at 641.36-645.13 Mb using GWAS and could averagely increase 39.66% of FCR resistance in a biparental population. Fusarium crown rot can cause considerable yield losses. Developing and growing resistance cultivars is one of the most effective approaches for controlling this disease. In this study, 361 Chinese wheat landraces were evaluated for FCR resistance, and 27 with the disease index lower than 30.00 showed potential in wheat breeding programs. Using a genome-wide association study approach, putative quantitative trait loci (QTL) for FCR resistance was identified. A total of 21 putative loci on chromosomes 1A, 1B, 2B, 2D, 3B, 3D, 4B, 5A, 5B, 7A, and 7B were significantly associated with FCR resistance. Among these, a major locus Qfcr.sicau.1B-4 was consistently identified among all the trials on chromosome 1B with the physical regions from 641.36 to 645.13 Mb. A polymorphism kompetitive allele-specific polymerase (KASP) marker was developed and used to validate its effect in an F2:3 population consisting of 136 lines. The results showed the presence of this resistance allele could explain up to 39.66% of phenotypic variance compared to its counterparts. In addition, quantitative real-time polymerase chain reaction showed that two candidate genes of Qfcr.sicau.1B-4 were differently expressed after inoculation. Our study provided useful information for improving FCR resistance in wheat.


Assuntos
Fusarium , Estudo de Associação Genômica Ampla , Mapeamento Cromossômico , Triticum/genética , Melhoramento Vegetal , Resistência à Doença/genética , Doenças das Plantas/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA