Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 10(2)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38391474

RESUMO

Conductive hydrogels, characterized by their excellent conductivity and flexibility, have attracted widespread attention and research in the field of flexible wearable sensors. This paper reviews the application progress, related challenges, and future prospects of conductive hydrogels in flexible wearable sensors. Initially, the basic properties and classifications of conductive hydrogels are introduced. Subsequently, this paper discusses in detail the specific applications of conductive hydrogels in different sensor applications, such as motion detection, medical diagnostics, electronic skin, and human-computer interactions. Finally, the application prospects and challenges are summarized. Overall, the exceptional performance and multifunctionality of conductive hydrogels make them one of the most important materials for future wearable technologies. However, further research and innovation are needed to overcome the challenges faced and to realize the wider application of conductive hydrogels in flexible sensors.

2.
Phys Med Biol ; 69(6)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38346343

RESUMO

Objective. Establishing realistic phantoms of human anatomy is a continuing concern within virtual clinical trials of breast x-ray imaging. However, little attention has been paid to glandular distribution within these phantoms. The principal objective of this study was to develop breast phantoms considering the clinical glandular distribution.Approach. This research introduces an innovative method for integrating glandular distribution information into breast phantoms. We have developed an open-source software, THUBreast44http://github.com/true02Hydrogen/THUBreast/, which generates breast phantoms that accurately replicate both the structural texture and glandular distribution, two crucial elements in breast x-ray imaging and dosimetry. To validate the efficacy of THUBreast, we assembled three groups of breast phantoms (THUBreast, patient-based, homogeneous) for irradiation simulation and calculated the power-law exponents (ß) and mean glandular dose (Dg), indicators of texture realism and radiation risk, respectively, utilizing MC-GPU.Main results. Upon the computation of theDgfor the THUBreast phantoms, it was found to be in agreement with that absorbed by the phantoms based on patients, with an average deviation of 4%. The estimates of averageDgthus obtained were on average 23% less than those computed for the homogeneous phantoms. It was observed that the homogeneous phantoms did overestimate the averageDgby 30% when compared to the phantoms based on patients. The mean value ofßfor the images of THUBreast phantoms was found to be 2.92 ± 0.08, which shows a commendable agreement with the findings of prior investigations.Significance. It is evidently clear from the results that THUBreast phantoms have a preliminary good performance in both imaging and dosimetry in terms of indicators of texture realism and glandular dose. THUBreast represents a further step towards developing a powerful toolkit for comprehensive evaluation of image quality and radiation risk.


Assuntos
Mama , Mamografia , Humanos , Raios X , Mama/diagnóstico por imagem , Mamografia/métodos , Radiometria/métodos , Software , Imagens de Fantasmas , Método de Monte Carlo
3.
ACS Appl Mater Interfaces ; 16(4): 4918-4924, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38237115

RESUMO

Copper-based (I) halide perovskites have emerged as a promising candidate for scintillation screens in X-ray inspection and imaging areas due to their solution processability and high light yield. Here, a centimeter-sized Cs3Cu2Cl5 single crystal was grown by a slow-cooling method. The planar orientation was controlled in a space-confined chamber, generating a planar crystal which is readily used for a scintillation screen without any further shaping. The crystal exhibited a unity photoluminescence quantum yield and superior scintillation performance. The Cs3Cu2Cl5 single crystal exhibited a high light yield up to 95,000 photons/MeV, which enabled an X-ray detector of a detection limit down to 2.7 µGyair/s. The homemade imager demonstrated a spatial resolution of 105 lp/mm, representing an unprecedented micrometer resolution in laboratory. Importantly, the stability of Cs3Cu2Cl5 was significantly improved by a new surface passivation procedure, whereby the passivated crystal reserved its phase after 6 months' storage in a vial. This work introduced a new solution-based synthetic method for two-dimensional scintillating crystals, opening many avenues to high-performance X-ray imaging applications.

4.
J Funct Biomater ; 14(11)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37998122

RESUMO

The intricate microenvironment at the wound site, coupled with the multi-phase nature of the healing process, pose significant challenges to the development of wound repair treatments. In recent years, applying the distinctive benefits of hydrogels to the development of wound repair strategies has yielded some promising results. Multifunctional hydrogels, by meeting the different requirements of wound healing stages, have greatly improved the healing effectiveness of chronic wounds, offering immense potential in wound repair applications. This review summarized the recent research and applications of multifunctional hydrogels in wound repair. The focus was placed on the research progress of diverse multifunctional hydrogels, and their mechanisms of action at different stages of wound repair were discussed in detail. Through a comprehensive analysis, we found that multifunctional hydrogels play an indispensable role in the process of wound repair by providing a moist environment, controlling inflammation, promoting angiogenesis, and effectively preventing infection. However, further implementation of multifunctional hydrogel-based therapeutic strategies also faces various challenges, such as the contradiction between the complexity of multifunctionality and the simplicity required for clinical translation and application. In the future, we should work to address these challenges, further optimize the design and preparation of multifunctional hydrogels, enhance their effectiveness in wound repair, and promote their widespread application in clinical practice.

5.
J Phys Chem Lett ; 14(47): 10717-10718, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37996074
6.
J Phys Chem Lett ; 14(44): 10003-10011, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37906169

RESUMO

Recently, transparent afterglow phosphors have attracted increasing interest due to the mitigated self-absorption and the ensuing improved light output, which have inspired many advanced applications, including volumetric display and three-dimensional optical encryption. To date, the most successful afterglow phosphors remain those traditional oxide, nitride, or sulfide powders which are not transparent due to a severe scattering effect. By reduction of the number of interfaces and engineering the refractive index, the scattering effect could be circumvented effectively. To this end, four material systems, including transparent afterglow single crystals, transparent phosphorescent organics, transparent afterglow glass, and luminescent nanocomposites, were reviewed in this Perspective. We started with the discussion of the nontransparency origin. Through a careful inspection of Rayleigh scattering theory, a general solution involving both refractive index and particle size was proposed to reduce the scattering effect. Many representative works on transparent afterglow phosphors were systematically reviewed, where the typical synthesis methods and the advantages and disadvantages of each system were critically presented. In the last part, bottlenecks, prospects, and future development directions based on transparent afterglow phosphors are proposed.

7.
Gels ; 9(8)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37623116

RESUMO

Smart-responsive hydrogels have been widely used in various fields, particularly in the biomedical field. Compared with traditional hydrogels, smart-responsive hydrogels not only facilitate the encapsulation and controlled release of drugs, active substances, and even cells but, more importantly, they enable the on-demand and controllable release of drugs and active substances at the disease site, significantly enhancing the efficacy of disease treatment. With the rapid advancement of biomaterials, smart-responsive hydrogels have received widespread attention, and a wide variety of smart-responsive hydrogels have been developed for the treatment of different diseases, thus presenting tremendous research prospects. This review summarizes the latest advancements in various smart-responsive hydrogels used for disease treatment. Additionally, some of the current shortcomings of smart-responsive hydrogels and the strategies to address them are discussed, as well as the future development directions and prospects of smart-responsive hydrogels.

8.
ACS Nano ; 16(12): 21576-21582, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36441950

RESUMO

Transparent nanocomposites have attracted considerable attention in many areas including X-ray imaging, wearable electronics, and volumetric display. However, both the transparency and the flexibility were largely jeopardized by the loading content of functional nanoparticles (NPs), posing a major challenge to material engineering. Herein, an ultra-high-loading-ceramic nanocomposite film was fabricated by a blade-coating technique. The film exhibited a high transparency over ∼89% in the whole visible region even with a fluoride-ceramic content up to ∼83 wt %. Based on a real-time investigation on the formation process of the film, the refractive-index difference between the nanoparticles and matrix was identified as the dominating factor to transparency. The transmittance spectra based on Rayleigh scattering theory were simulated to screen both nanoparticle radius and loading content, leading to the discovery of a transparency zone for film making. As a proof-of-concept experiment, the transparent film was used as an X-ray scintillation screen, which exhibited a comparable light yield to that of LYSO owing to the mitigated self-absorption effect. The homemade imager demonstrated a spatial resolution of 122 lp/mm, representing a record resolution of 4.1 µm for laboratory X-ray photography. Our work not only provided an experimental procedure to make high-loading functional films but also demonstrated a theoretical model to guide the search for gradients of transparent composites.

9.
ACS Appl Mater Interfaces ; 14(4): 5951-5958, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35067042

RESUMO

Here, a highly luminescent, stable, and visible-transparent organic-inorganic hybrid film was in situ synthesized in a siloxane-polyether (di-ureasil) sol-gel process by dissolving a 4-hydroxy-2-methyl-1,5-naphthyridine-3-carbonitrile (2mCND) ligand and a europium(III) ion. Doping a europium(III) complex into di-ureasil achieves an boost in photoluminescence quantum efficiency (PLQY) from 23.25 to 68.9%. In particular, the excellent photostability of the hybrid film was demonstrated after a 15 h aging experiment in strong UV-LED irradiation (∼468 mW/cm2). Compared to the polymethyl methacrylate (PMMA) matrix, di-ureasil containing a europium(III) complex shows an improved UV resistance, making it a promising candidate for various photonic applications. By integrating the hybrid film onto an acrylic substrate, a transparent luminescent solar concentrator (LSC) was fabricated, which reveals an optical conversion efficiency of ∼0.51% with a G factor of 3.1 at an optical transmission level of ∼90%. Such an LSC could be of particular interest in future transparent photovoltaic windows.

10.
Angew Chem Int Ed Engl ; 60(46): 24450-24455, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34453771

RESUMO

We report the growth of a halide-based double perovskite, Cs2 Nax Ag1-x InCl6 :y%Mn, via a facile hydrothermal reaction at 180 °C. Through a co-doping strategy of both Na+ and Mn2+ , the as-prepared crystals exhibited a red afterglow featuring a high color purity (ca. 100 %) and a long duration time (>5400 s), three orders of magnitude longer than those solution-processed organic afterglow crystals. The energy transfer (ET) process between self-trapped excitons (STE) and activators was investigated through time-resolved spectroscopy, which suggested an ET efficiency up to 41 %. Importantly, the nominal concentration of dopants, especially in the case of Na+ , was found a useful tool to control both energy level and number distribution of traps. Cryogenic afterglow measurements suggested that the afterglow phenomenon was likely governed by thermal-activated exciton diffusion and electron tunneling process.

11.
ACS Appl Mater Interfaces ; 13(5): 6404-6410, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33499596

RESUMO

Despite their low toxicity and phase stability, lead-free double perovskite nanocrystals, Cs2AgInCl6 in specific, have suffered from low quantum yield of photoluminescence. This is mainly due to two reasons, including (i) the quenching effect from metal silver which was usually formed at high temperature from Ag+ reduction in the presence of organic amines and (ii) the parity-forbidden transition of pristine double perovskites. Here, we reported a room-temperature synthesis of Cs2AgInCl6 nanocrystals in an inverse microemulsion system, where Ag+ reduction was largely suppressed. By codoping Bi and Na ions, dark self-trapping excitons (STEs) were converted into bright ones, enabling a bright phosphor of photoluminescence quantum yield up to 56%. Importantly, the doping approach at room temperature relaxed the parity-forbidden transition (1S0 → 3P2) of Bi-6s2 orbitals, revealing a fine structure of a triband excitation profile. Such spin-rule relaxation was ascribed to symmetry breaking of the doped lattice, which was evidenced by Raman spectroscopy. In a proof-of-concept experiment, the bright nanocrystals were used as a color-converting ink, which enabled a stable white light light-emitting diode to operate in various environments, even under water, for long-term service.

12.
Sensors (Basel) ; 20(5)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164200

RESUMO

Deep Learning (DL) is the state-of-the-art machine learning technology, which shows superior performance in computer vision, bioinformatics, natural language processing, and other areas. Especially as a modern image processing technology, DL has been successfully applied in various tasks, such as object detection, semantic segmentation, and scene analysis. However, with the increase of dense scenes in reality, due to severe occlusions, and small size of objects, the analysis of dense scenes becomes particularly challenging. To overcome these problems, DL recently has been increasingly applied to dense scenes and has begun to be used in dense agricultural scenes. The purpose of this review is to explore the applications of DL for dense scenes analysis in agriculture. In order to better elaborate the topic, we first describe the types of dense scenes in agriculture, as well as the challenges. Next, we introduce various popular deep neural networks used in these dense scenes. Then, the applications of these structures in various agricultural tasks are comprehensively introduced in this review, including recognition and classification, detection, counting and yield estimation. Finally, the surveyed DL applications, limitations and the future work for analysis of dense images in agriculture are summarized.

13.
PLoS One ; 10(9): e0137583, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26335571

RESUMO

BACKGROUND: Growing evidence indicates that oxidative stress (OS), a persistent state of excess amounts of reactive oxygen species (ROS) along with reactive nitrogen species (RNS), plays an important role in insulin resistance, diabetic complications, and dysfunction of pancreatic ß-cells. Pancreatic ß-cells contain exceptionally low levels of antioxidant enzymes, rendering them susceptible to ROS-induced damage. Induction of antioxidants has been proposed to be a way for protecting ß-cells against oxidative stress. Compared to other antioxidants that act against particular ß-cell damages, metallothionein (MT) is the most effective in protecting ß-cells from several oxidative stressors including nitric oxide, peroxynitrite, hydrogen peroxide, superoxide and streptozotocin (STZ). We hypothesized that MT overexpression in pancreatic ß-cells would preserve ß-cell function in C57BL/6J mice, an animal model susceptible to high fat diet-induced obesity and type 2 diabetes. RESEARCH DESIGN AND METHODS: The pancreatic ß-cell specific MT overexpression was transferred to C57BL/6J background by backcrossing. We studied transgenic MT (MT-tg) mice and wild-type (WT) littermates at 8 weeks and 18 weeks of age. Several tests were performed to evaluate the function of islets, including STZ in vivo treatment, intraperitoneal glucose tolerance tests (IPGTT) and plasma insulin levels during IPGTT, pancreatic and islet insulin content measurement, insulin secretion, and islet morphology assessment. Gene expression in islets was performed by quantitative real-time PCR and PCR array analysis. Protein levels in pancreatic sections were evaluated by using immunohistochemistry. RESULTS: The transgenic MT protein was highly expressed in pancreatic islets. MT-tg overexpression significantly protected mice from acute STZ-induced ROS at 8 weeks of age; unexpectedly, however, MT-tg impaired glucose stimulated insulin secretion (GSIS) and promoted the development of diabetes. Pancreatic ß-cell function was significantly impaired, and islet morphology was also abnormal in MT-tg mice, and more severe damage was detected in males. The unique gene expression pattern and abnormal protein levels were observed in MT-tg islets. CONCLUSIONS: MT overexpression protected ß-cells from acute STZ-induced ROS damages at young age, whereas it impaired GSIS and promoted the development of diabetes in adult C57BL/6J mice, and more severe damage was found in males.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Células Secretoras de Insulina/metabolismo , Metalotioneína/metabolismo , Estresse Oxidativo/fisiologia , Fatores Etários , Animais , Diabetes Mellitus Experimental/genética , Feminino , Teste de Tolerância a Glucose , Insulina/sangue , Masculino , Metalotioneína/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Espécies Reativas de Oxigênio/metabolismo , Fatores Sexuais
14.
Molecules ; 17(10): 12330-40, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-23085667

RESUMO

Fifteen compounds, which included six chiral lignans and nine phenolic glycosides, were separated from the butanol fraction of Averrhoa carambola L. root and identified. All of the compounds, namely 3,4,5-trimethoxyphenol-1-O-ß-D-glucopyranoside, benzyl-1-O-ß-D-glucopyranoside, (+)-5'-methoxyisolariciresinol 3α-O-ß-D-gluco-pyranoside, (+)-isolariciresinol 3α-O-ß-D-glucopyranoside, koaburaside, (+)-lyoniresinol 3α-O-ß-D-glucopyranoside, (-)-lyoniresinol 3α-O-ß-D-glucopyranoside, (-)-5'-methoxyisolariciresinol 3α-O-ß-D-glucopyranoside, (-)-isolariciresinol 3α-O-ß-D-glucopyranoside, 3,5-dimethoxy-4-hydroxyphenyl 1-O-ß-apiofuranosyl (1''→6')-O-ß-D-glucopyranoside, 3,4,5-trimethoxyphenyl 1-O-ß-apiofuranosyl (1''→6')-ß-gluco-pyranoside, methoxyhydroquinone-4-ß-D-glucopyranoside, (2S)-2-O-ß-D-gluco-pyranosyl-2-hydroxyphenylacetic acid, 3-hydroxy-4-methoxyphenol 1-O-ß-D-apio-furanosyl-(1''→6')-O-ß-D-glucopyranoside and 4-hydroxy-3-methoxyphenol 1-O-ß-D-apiofuranosyl-(1''→6')-O-ß-D-glucopyranoside were isolated from this plant for the first time.


Assuntos
Gleiquênias/química , Glicosídeos/química , Lignanas/química , Fenóis/química , Extratos Vegetais/química , Raízes de Plantas/química , Butanóis/química , Ressonância Magnética Nuclear Biomolecular , Solventes/química , Temperatura de Transição
15.
J Neurophysiol ; 104(4): 2125-38, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20668269

RESUMO

Parasympathetic cardiac motoneurons (PCMNs) in the nucleus ambiguus (NA) play a key role in regulating cardiac functions. In this study, we examined the effects of maternal diabetes on excitability, action potential (AP) properties, and small conductance Ca(2+)-activated K(+) (SK) currents of PCMNs. Neonatal mice from diabetic (OVE26 female, NMDM) and normal (FVB female, control) mothers that had been mated with nondiabetic fathers (FVB male) were used. Tracer XRITC was injected into the pericardial sac at P7-9 to retrogradely label PCMNs. Two days later, XRITC-labeled PCMNs were identified in brain stem slices. The responses of spike frequency, AP repolarization (half-width) and afterhyperpolarization (AHP) of PCMNs to current injections were studied using whole cell current clamp. Outward and afterhyperpolarization currents (I(AHP)) in response to voltage steps were measured using whole cell voltage clamp. In examining the effects of maternal diabetes on excitability and AP properties, we found that in NMDM spike frequency decreased, the half-width and AHP peak amplitude increased, and the peak amplitude of outward transient currents and I(AHP) increased compared with those measured in control. In examining the effects of maternal diabetes on SK channels, we found that after blockage of SK channels with a specific SK channel blocker apamin, maternal diabetes significantly increased apamin-sensitive outward transient currents and I(AHP), and suppressed AHP amplitude in NMDM more than those in control. Further, apamin application increased the firing rate to current injections and completely abolished the difference of the firing rate between control and NMDM. We suggest that the augmented SK-mediated currents may contribute to the increased AHP amplitude and the attenuated excitability of PCMNs in NMDM.


Assuntos
Potenciais de Ação/fisiologia , Bulbo/fisiologia , Neurônios Motores/fisiologia , Gravidez em Diabéticas/metabolismo , Gravidez em Diabéticas/fisiopatologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/fisiologia , Animais , Animais Recém-Nascidos , Feminino , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Transgênicos , Neurônios Motores/patologia , Gravidez , Gravidez em Diabéticas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...