Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Arch Allergy Immunol ; : 1-9, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688250

RESUMO

INTRODUCTION: This study aimed to assess the effectiveness of fractional exhaled nitric oxide (FeNO) combined with pulmonary function testing (PFT) for predicting the treatment outcome of patients with severe asthma receiving dupilumab. METHODS: A total of 31 patients with severe asthma visiting our hospital from January 2022 to June 2023 were included in this study, with 28 patients completing a 16-week course of dupilumab treatment. Baseline clinical data, including demographic information, blood eosinophil counts, serum IgE levels, FeNO, asthma control test (ACT), asthma control questionnaire (ACQ), and other parameters, were collected. A predictive model using a generalized linear model was established. RESULTS: Following the 16-week course of dupilumab treatment, 22 patients showed effective response based on GETE scores, while 6 patients were nonresponders. Notably, significant improvements were observed in clinical parameters such as blood eosinophil counts, serum IgE levels, FeNO, FEV1, FEV1%, ACT, and ACQ in both response groups (p < 0.05). FeNO and pulmonary function tests demonstrated AUC values of 0.530, 0.561, and 0.765, respectively, in predicting the clinical efficacy of dupilumab, which were lower than when FeNO was combined with FEV1%. The combination of FeNO and FEV1% had a sensitivity of 1.000 and specificity of 0.591 in predicting treatment response. CONCLUSION: The combined assessment of FeNO and FEV1% provides improved accuracy for predicting the clinical efficacy of dupilumab in managing severe asthma. However, further larger scale clinical studies with comprehensive follow-up data are needed to validate the therapeutic efficacy and applicability across diverse patient populations.

2.
Commun Biol ; 6(1): 548, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217557

RESUMO

Human mitochondrial NAD(P)+-dependent malic enzyme (ME2) is well-known for its role in cell metabolism, which may be involved in cancer or epilepsy. We present potent ME2 inhibitors based on cyro-EM structures that target ME2 enzyme activity. Two structures of ME2-inhibitor complexes demonstrate that 5,5'-Methylenedisalicylic acid (MDSA) and embonic acid (EA) bind allosterically to ME2's fumarate-binding site. Mutagenesis studies demonstrate that Asn35 and the Gln64-Tyr562 network are required for both inhibitors' binding. ME2 overexpression increases pyruvate and NADH production while decreasing the cell's NAD+/NADH ratio; however, ME2 knockdown has the opposite effect. MDSA and EA inhibit pyruvate synthesis and thus increase the NAD+/NADH ratio, implying that these two inhibitors interfere with metabolic changes by inhibiting cellular ME2 activity. ME2 silence or inhibiting ME2 activity with MDSA or EA decreases cellular respiration and ATP synthesis. Our findings suggest that ME2 is crucial for mitochondrial pyruvate and energy metabolism, as well as cellular respiration, and that ME2 inhibitors could be useful in the treatment of cancer or other diseases that involve these processes.


Assuntos
Respiração Celular , NAD , Humanos , NAD/metabolismo , Mitocôndrias/metabolismo , Metabolismo Energético , Ácido Pirúvico/metabolismo
3.
Cell Mol Biol Lett ; 27(1): 19, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236296

RESUMO

Peptididylarginine deiminase type 2 (PADI2) catalyzes the conversion of arginine residues to citrulline residues on proteins. We demonstrate that PADI2 induces T cell activation and investigate how PADI2 promotes activated T cell autonomous death (ACAD). In activated Jurkat T cells, overexpression of PADI2 significantly increases citrullinated proteins and induces endoplasmic reticulum (ER) stress and unfolded protein response (UPR) signaling, ultimately resulting in the expression of autophagy-related proteins and autophagy. PADI2 promoted autophagy and resulted in the early degradation of p62 and the light chain 3B (LC3B)-II accumulation. In Jurkat T cells, silencing the autophagy-related gene (Atg) 12 protein inhibits PADI2-mediated autophagy and promotes ER stress and apoptosis, whereas overexpression of Atg12 decreased ER stress and prolonged autophagy to promote cell survival. Additionally, PADI2 regulates T cell activation and the production of Th17 cytokines in Jurkat T cells (interleukins 6, IL-17A, IL-17F, IL-21, and IL-22). In Jurkat T cells, silencing IL-6 promotes autophagy mediated by PADI2 and inhibits PADI2-induced apoptosis, whereas silencing Beclin-1 increases the activation and survival of Th17-like T cells while decreasing autophagy and apoptosis. PADI2 silencing alleviates ER stress caused by PADI2 and decreases cytokine expression associated with Th17-like T cell activation and ACAD. We propose that PADI2 was involved in Th17 lymphocyte ACAD via a mechanism involving ER stress and autophagy that was tightly regulated by PADI2-mediated citrullination. These findings suggest that inhibiting Th17 T cell activation and the development of severe autoimmune diseases may be possible through the use of novel antagonists that specifically target PADI2.


Assuntos
Estresse do Retículo Endoplasmático , Proteína-Arginina Desiminase do Tipo 2 , Células Th17 , Apoptose , Autofagia , Proteína Beclina-1 , Estresse do Retículo Endoplasmático/imunologia , Proteína-Arginina Desiminase do Tipo 2/imunologia , Células Th17/imunologia
4.
J Biol Chem ; 298(3): 101658, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35101449

RESUMO

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has severely affected human lives around the world as well as the global economy. Therefore, effective treatments against COVID-19 are urgently needed. Here, we screened a library containing Food and Drug Administration (FDA)-approved compounds to identify drugs that could target the SARS-CoV-2 main protease (Mpro), which is indispensable for viral protein maturation and regard as an important therapeutic target. We identified antimalarial drug tafenoquine (TFQ), which is approved for radical cure of Plasmodium vivax and malaria prophylaxis, as a top candidate to inhibit Mpro protease activity. The crystal structure of SARS-CoV-2 Mpro in complex with TFQ revealed that TFQ noncovalently bound to and reshaped the substrate-binding pocket of Mpro by altering the loop region (residues 139-144) near the catalytic Cys145, which could block the catalysis of its peptide substrates. We also found that TFQ inhibited human transmembrane protease serine 2 (TMPRSS2). Furthermore, one TFQ derivative, compound 7, showed a better therapeutic index than TFQ on TMPRSS2 and may therefore inhibit the infectibility of SARS-CoV-2, including that of several mutant variants. These results suggest new potential strategies to block infection of SARS-CoV-2 and rising variants.


Assuntos
Aminoquinolinas , Antivirais , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus , SARS-CoV-2 , Aminoquinolinas/química , Aminoquinolinas/farmacologia , Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Humanos , Simulação de Acoplamento Molecular , Pandemias , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Internalização do Vírus/efeitos dos fármacos
5.
J Cell Physiol ; 237(4): 2140-2154, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35019151

RESUMO

We present a mechanism for how ornithine decarboxylase (ODC) regulates the crosstalk between autophagy and apoptosis. In cancer cells, low-intensity ultraviolet B (UVBL ) induces autophagy while high-intensity UVB (UVBH ) induces apoptosis. Overexpression of ODC decreases UVBL -induced autophagy by inhibiting Atg5-Atg12 conjugation and suppressing the expression of autophagy markers LC3, Atg7, Atg12, and BECN1 proteins. In contrast, when ODC-overexpressing cells are exposed to UVBH radiation, the levels of LC3-II, Atg5-Atg12 conjugate, BECN1, Atg7, and Atg12 increase, while the apoptosis marker cleaved-PARP proteins decrease, indicating that ODC overexpression induced UVBH -induced autophagy but inhibited UVBH -induced cellular apoptosis. Additionally, when exposed to UVBH radiation, silencing BECN1, Atg5, and Atg12 genes results in a decrease in the level of LC3-II proteins but an increase in the level of cleaved-PARP proteins, and apoptotic bodies were significantly increased while autophagosomes were significantly decreased. These findings imply that ODC inhibits apoptosis in cells via the autophagy pathway. The role of Atg12 in ODC-overexpressing cells exposed to UVBH radiation is investigated using site-directed mutagenesis. Our results indicate that the Atg12-D111S mutant has increased cell survival. The Atg12-ΔG186 mutant impairs autophagy and enhances apoptosis. We demonstrate that when ODC-overexpressing cells are silenced for the Atg12 protein, autophagy and apoptosis are strongly affected, and ODC-induced autophagy protects against UVBH -induced apoptosis via the Atg12 protein.


Assuntos
Ornitina Descarboxilase , Lesões por Radiação , Apoptose/genética , Autofagia/genética , Proteína 12 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Humanos , Ornitina Descarboxilase/genética , Raios Ultravioleta
6.
iScience ; 24(2): 102034, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33554057

RESUMO

Human mitochondrial NAD(P)+-dependent malic enzyme (ME2) is well recognized to associate with cancer cell metabolism, and the single nucleotide variants (SNVs) of ME2 may play a role in enzyme regulation. Here we reported that the SNVs of ME2 occurring in the allosteric sites lead to inactivation or overactivation of ME2. Two ME2-SNVs, ME2_R67Q and ME2-R484W, that demonstrated inactivating or overactivating enzyme activities of ME2, respectively, have different impact toward the cells. The cells with overactivating SNV enzyme, ME2_R484W, grow more rapidly and are more resistant to cellular senescence than the cells with wild-type or inactivating SNV enzyme, ME2_R67Q. Crystal structures of these two ME2-SNVs reveal that ME2_R67Q was an inactivating "dead form," and ME2_R484W was an overactivating "closed form" of the enzyme. The resolved ME2-SNV structures provide a molecular basis to explain the abnormal kinetic properties of these SNV enzymes.

7.
J Cell Physiol ; 236(8): 5646-5663, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33432662

RESUMO

This study reveals an uncovered mechanism for the regulation of polyamine homeostasis through protein arginyl citrullination of antizyme (AZ), a natural inhibitor of ornithine decarboxylase (ODC). ODC is critical for the cellular production of polyamines. AZ binds to ODC dimers and promotes the degradation of ODC via the 26S proteasome. This study demonstrates the protein citrullination of AZ catalyzed by peptidylarginine deiminase type 4 (PAD4) both in vitro and in cells. Upon PAD4 activation, the AZ protein was citrullinated and accumulated, leading to higher levels of ODC proteins in the cell. In the PAD4-overexpressing and activating cells, the levels of ODC enzyme activity and the product putrescine increased with the level of citrullinated AZ proteins and PAD4 activity. Suppressing cellular PAD4 activity reduces the cellular levels of ODC and downregulates cellular polyamines. Furthermore, citrullination of AZ in the C-terminus attenuates AZ function in the inhibition, binding, and degradation of ODC. This paper provides evidence to illustrate that PAD4-mediated AZ citrullination upregulates cellular ODC and polyamines by retarding ODC degradation, thus interfering with the homeostasis of cellular polyamines, which may be an important pathway regulating AZ functions that is relevant to cancer biology.


Assuntos
Citrulinação/efeitos dos fármacos , Homeostase/fisiologia , Inibidores da Ornitina Descarboxilase/farmacologia , Ornitina Descarboxilase/metabolismo , Poliaminas/metabolismo , Proteínas de Transporte/metabolismo , Citrulinação/fisiologia , Homeostase/efeitos dos fármacos , Humanos , Inibidores da Ornitina Descarboxilase/metabolismo , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo
8.
Sci Rep ; 11(1): 566, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436675

RESUMO

Melanotransferrin (MTf) is an iron-binding member of the transferrin superfamily that can be membrane-anchored or secreted in serum. On cells, it can mediate transferrin-independent iron uptake and promote proliferation. In serum, it is a transcytotic iron transporter across the blood-brain barrier. MTf has been exploited as a drug delivery carrier to the brain and as an antibody-drug conjugate (ADC) target due to its oncogenic role in melanoma and its elevated expression in triple-negative breast cancer (TNBC). For treatment of TNBC, an MTf-targeting ADC completed a phase I clinical trial (NCT03316794). The structure of its murine, unconjugated Fab fragment (SC57.32) is revealed here in complex with MTf. The MTf N-lobe is in an active and iron-bound, closed conformation while the C-lobe is in an open conformation incompatible with iron binding. This combination of active and inactive domains displays a novel inter-domain arrangement in which the C2 subdomain angles away from the N-lobe. The C2 subdomain also contains the SC57.32 glyco-epitope, which comprises ten protein residues and two N-acetylglucosamines. Our report reveals novel features of MTf and provides a point of reference for MTf-targeting, structure-guided drug design.


Assuntos
Fragmentos Fab das Imunoglobulinas/química , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/fisiologia , Domínios Proteicos , Acetilglucosamina , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Expressão Gênica , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/metabolismo , Fragmentos Fab das Imunoglobulinas/fisiologia , Ferro/metabolismo , Macaca fascicularis , Melanoma/etiologia , Melanoma/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Ligação Proteica , Neoplasias de Mama Triplo Negativas/genética
9.
Nutrients ; 12(12)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348871

RESUMO

BACKGROUND: Human ornithine decarboxylase (ODC) is a well-known oncogene, and the discovery of ODC enzyme inhibitors is a beneficial strategy for cancer therapy and prevention. METHODS: We examined the inhibitory effects of a variety of flavone and flavonol derivatives on ODC enzymatic activity, and performed in silico molecular docking of baicalein, 7,8-dihydroxyflavone and myricetin to the whole dimer of human ODC to investigate the possible binding site of these compounds on ODC. We also examined the cytotoxic effects of these compounds with cell-based studies. RESULTS: Baicalein, 7,8-dihydroxyflavone and myricetin exhibited significant ODC suppression activity with IC50 values of 0.88 µM, 2.54 µM, and 7.3 µM, respectively, which were much lower than that of the active-site irreversible inhibitor α-DL-difluoromethylornithine (IC50, the half maximal inhibitory concentration, of approximately 100 µM). Kinetic studies and molecular docking simulations suggested that baicalein, and 7,8-dihydroxyflavone act as noncompetitive inhibitors that are hydrogen-bonded to the region near the active site pocket in the dimer interface of the enzyme. Baicalein and myricetin suppress cell growth and induce cellular apoptosis, and both of these compounds suppress the ODC-evoked anti-apoptosis of cells. CONCLUSIONS: Therefore, we suggest that the flavone or flavonol derivatives baicalein, 7,8-dihydroxyflavone, and myricetin are potent chemopreventive and chemotherapeutic agents that target ODC.


Assuntos
Antioxidantes/farmacologia , Flavanonas/farmacologia , Flavonoides/farmacologia , Ornitina Descarboxilase/efeitos dos fármacos , Células Cultivadas , Humanos , Simulação de Acoplamento Molecular/métodos , Ornitina Descarboxilase/metabolismo
10.
Biomolecules ; 9(12)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842334

RESUMO

Antizyme (AZ) is a protein that negatively regulates ornithine decarboxylase (ODC). AZ achieves this inhibition by binding to ODC to produce AZ-ODC heterodimers, abolishing enzyme activity and targeting ODC for degradation by the 26S proteasome. In this study, we focused on the biomolecular interactions between the C-terminal domain of AZ (AZ95-228) and ODC to identify the functional elements of AZ that are essential for binding, inhibiting and degrading ODC, and we also identified the crucial factors governing the differential binding and inhibition ability of AZ isoforms toward ODC. Based on the ODC inhibition and AZ-ODC binding studies, we demonstrated that amino acid residues reside within the α1 helix, ß5 and ß6 strands, and connecting loop between ß6 and α2 (residues 142-178), which is the posterior part of AZ95-228, play crucial roles in ODC binding and inhibition. We also identified the essential elements determining the ODC-degradative activity of AZ; amino acid residues within the anterior part of AZ95-228 (residues 120-145) play crucial roles in AZ-mediated ODC degradation. Finally, we identified the crucial factors that govern the differential binding and inhibition of AZ isoforms toward ODC. Mutagenesis studies of AZ1 and AZ3 and their binding and inhibition revealed that the divergence of amino acid residues 124, 150, 166, 171, and 179 results in the differential abilities of AZ1 and AZ3 in the binding and inhibition of ODC.


Assuntos
Inibidores da Ornitina Descarboxilase/farmacologia , Ornitina Descarboxilase/metabolismo , Proteínas/metabolismo , Proteólise/efeitos dos fármacos , Sítios de Ligação/efeitos dos fármacos , Humanos , Inibidores da Ornitina Descarboxilase/química , Inibidores da Ornitina Descarboxilase/metabolismo , Proteínas/isolamento & purificação
11.
EMBO J ; 37(18)2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30166453

RESUMO

Multi-subunit cullin-RING ligases (CRLs) are the largest family of ubiquitin E3 ligases in humans. CRL activity is tightly regulated to prevent unintended substrate degradation or autocatalytic degradation of CRL subunits. Using a proteomics strategy, we discovered that CRL4AMBRA1 (CRL substrate receptor denoted in superscript) targets Elongin C (ELOC), the essential adapter protein of CRL5 complexes, for polyubiquitination and degradation. We showed that the ubiquitin ligase function of CRL4AMBRA1 is required to disrupt the assembly and attenuate the ligase activity of human CRL5SOCS3 and HIV-1 CRL5VIF complexes as AMBRA1 depletion leads to hyperactivation of both CRL5 complexes. Moreover, CRL4AMBRA1 modulates interleukin-6/STAT3 signaling and HIV-1 infectivity that are regulated by CRL5SOCS3 and CRL5VIF, respectively. Thus, by discovering a substrate of CRL4AMBRA1, ELOC, the shared adapter of CRL5 ubiquitin ligases, we uncovered a novel CRL cross-regulation pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Elonguina/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Proteólise , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Elonguina/genética , Células HEK293 , Infecções por HIV/genética , HIV-1/genética , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Ubiquitina-Proteína Ligases/genética , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética
12.
Sci Rep ; 7(1): 2429, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28546558

RESUMO

Our recent studies of peptidylarginine deiminase 4 (PAD4) demonstrate that its non-catalytic Ca2+-binding sites play a crucial role in the assembly of the correct geometry of the enzyme. Here, we examined the folding mechanism of PAD4 and the role of Ca2+ ions in the folding pathway. Multiple mutations were introduced into the calcium-binding sites, and these mutants were termed the Ca1_site, Ca2_site, Ca3_site, Ca4_site and Ca5_site mutants. Our data indicate that during the unfolding process, the PAD4 dimer first dissociates into monomers, and the monomers then undergo a three-state denaturation process via an intermediate state formation. In addition, Ca2+ ions assist in stabilizing the folding intermediate, particularly through binding to the Ca3_site and Ca4_site to ensure the correct and active conformation of PAD4. The binding of calcium ions to the Ca1_site and Ca2_site is directly involved in the catalytic action of the enzyme. Finally, this study proposes a model for the folding of PAD4. The nascent polypeptide chains of PAD4 are first folded into monomeric intermediate states, then continue to fold into monomers, and ultimately assemble into a functional and dimeric PAD4 enzyme, and cellular Ca2+ ions may be the critical factor governing the interchange.


Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/química , Cálcio/metabolismo , Dobramento de Proteína , Desiminases de Arginina em Proteínas/química , Desiminases de Arginina em Proteínas/metabolismo , Sítios de Ligação , Proteínas de Ligação ao Cálcio/genética , Expressão Gênica , Humanos , Modelos Biológicos , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Redobramento de Proteína , Desdobramento de Proteína , Proteína-Arginina Desiminase do Tipo 4 , Desiminases de Arginina em Proteínas/genética , Termodinâmica
13.
Sci Rep ; 7: 42662, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28209966

RESUMO

Our previous studies suggest that the fully active form of Peptidylarginine deiminase 4 (PAD4) should be a dimer and not a monomer. This paper provides a plausible mechanism for the control of PAD4 catalysis by molecular interplay between its dimer-interface loop (I-loop) and its substrate-binding loop (S-loop). Mutagenesis studies revealed that two hydrophobic residues, W347 and V469, are critical for substrate binding at the active site; mutating these two residues led to a severe reduction in the catalytic activity. We also identified several hydrophobic amino acid residues (L6, L279 and V283) at the dimer interface. Ultracentrifugation analysis revealed that interruption of the hydrophobicity of this region decreases dimer formation and, consequently, enzyme activity. Molecular dynamic simulations and mutagenesis studies suggested that the dimer interface and the substrate-binding site of PAD4, which consist of the I-loop and the S-loop, respectively, are responsible for substrate binding and dimer stabilization. We identified five residues with crucial roles in PAD4 catalysis and dimerization: Y435 and R441 in the I-loop, D465 and V469 in the S-loop, and W548, which stabilizes the I-loop via van der Waals interactions with C434 and Y435. The molecular interplay between the S-loop and the I-loop is crucial for PAD4 catalysis.


Assuntos
Histonas/química , Multimerização Proteica , Desiminases de Arginina em Proteínas/química , Biocatálise , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Histonas/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteína-Arginina Desiminase do Tipo 4 , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
14.
Biochemistry ; 55(36): 5180-90, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27564465

RESUMO

We report a molecular dynamics investigation of the structure, function, and inhibition of geranylgeranyl diphosphate synthase (GGPPS), a potential drug target, from the malaria parasite Plasmodium vivax. We discovered several GGPPS inhibitors, benzoic acids, and determined their structures crystallographically. We then used molecular dynamics simulations to investigate the dynamics of three such inhibitors and two bisphosphonate inhibitors, zoledronate and a lipophilic analogue of zoledronate, as well as the enzyme's product, GGPP. We were able to identify the main motions that govern substrate binding and product release as well as the molecular features required for GGPPS inhibition by both classes of inhibitor. The results are of broad general interest because they represent the first detailed investigation of the mechanism of action, and inhibition, of an important antimalarial drug target, geranylgeranyl diphosphate synthase, and may help guide the development of other, novel inhibitors as new drug leads.


Assuntos
Inibidores Enzimáticos/farmacologia , Farnesiltranstransferase/antagonistas & inibidores , Farnesiltranstransferase/química , Plasmodium vivax/efeitos dos fármacos , Antimaláricos/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Simulação de Dinâmica Molecular , Análise de Componente Principal , Termodinâmica
15.
ChemMedChem ; 11(17): 1915-23, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27457559

RESUMO

We report the first structure of heptaprenyl diphosphate synthase from Staphylococcus aureus (SaHepPPS), together with an investigation of its mechanism of action and inhibition. The protein is involved in the formation of menaquinone, a key electron transporter in many bacteria, including pathogens. SaHepPPS consists of a "catalytic " subunit (SaHepPPS-2) having two "DDXXD" motifs and a "regulatory" subunit (SaHepPPS-1) that lacks these motifs. High concentrations of the substrates, isopentenyl diphosphate and farnesyl diphosphate, inhibit the enzyme, which is also potently inhibited by bisphosphonates. The most active inhibitors (Ki ∼200 nm) were N-alkyl analogues of zoledronate containing ∼C6 alkyl side chains. They were modestly active against S. aureus cell growth, and growth inhibition was partially "rescued" by the addition of menaquinone-7. Because SaHepPPS is essential for S. aureus cell growth, its structure is of interest in the context of the development of menaquinone biosynthesis inhibitors as potential antibiotic leads.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Alquil e Aril Transferases/metabolismo , Antibacterianos/síntese química , Antibacterianos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Staphylococcus aureus/citologia , Staphylococcus aureus/enzimologia , Relação Estrutura-Atividade
16.
ACS Med Chem Lett ; 6(3): 349-54, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25815158

RESUMO

Farnesyl diphosphate synthase (FPPS) is an important drug target for bone resorption, cancer, and some infectious diseases. Here, we report five new structures including two having unique bound ligand geometries. The diamidine inhibitor 7 binds to human FPPS close to the homoallylic (S2) and allosteric (S3) sites and extends into a new site, here called S4. With the bisphosphonate inhibitor 8, two molecules bind to Trypanosoma brucei FPPS, one molecule in the allylic site (S1) and the other close to S2, the first observation of two bisphosphonate molecules bound to FPPS. We also report the structures of apo-FPPS from T. brucei, together with two more bisphosphonate-bound structures (2,9), for purposes of comparison. The diamidine structure is of particular interest because 7 could represent a new lead for lipophilic FPPS inhibitors, while 8 has low micromolar activity against T. brucei, the causative agent of human African trypanosomiasis.

17.
Sci Transl Med ; 6(263): 263ra161, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25411474

RESUMO

Lung cancer is the most common human malignancy and leads to about one-third of all cancer-related deaths. Lung adenocarcinomas harboring KRAS mutations, in contrast to those with EGFR and EML4-ALK mutations, have not been successfully targeted. We describe a combination therapy for treating these malignancies with two agents: a lipophilic bisphosphonate and rapamycin. This drug combination is much more effective than either agent acting alone in the KRAS G12D-induced mouse lung model. Lipophilic bisphosphonates inhibit both farnesyl and geranylgeranyldiphosphate synthases, effectively blocking prenylation of KRAS and other small G proteins (heterotrimeric GTP-binding protein, heterotrimeric guanine nucleotide-binding proteins) critical for tumor growth and cell survival. Bisphosphonate treatment of cells initiated autophagy but was ultimately unsuccessful and led to p62 accumulation and concomitant nuclear factor κB (NF-κB) activation, resulting in dampened efficacy in vivo. However, we found that rapamycin, in addition to inhibiting the mammalian target of rapamycin (mTOR) pathway, facilitated autophagy and prevented p62 accumulation-induced NF-κB activation and tumor cell proliferation. Overall, these results suggest that using lipophilic bisphosphonates in combination with rapamycin may provide an effective strategy for targeting lung adenocarcinomas harboring KRAS mutations.


Assuntos
Adenocarcinoma/tratamento farmacológico , Difosfonatos/uso terapêutico , Genes ras , Neoplasias Pulmonares/tratamento farmacológico , Sirolimo/uso terapêutico , Adenocarcinoma/patologia , Animais , Difosfonatos/administração & dosagem , Quimioterapia Combinada , Neoplasias Pulmonares/patologia , Camundongos , Sirolimo/administração & dosagem
18.
PLoS One ; 9(8): e104865, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25140796

RESUMO

Ornithine decarboxylase (ODC) catalyzes the decarboxylation of ornithine to putrescine and is the rate-limiting enzyme in the polyamine biosynthesis pathway. ODC is a dimeric enzyme, and the active sites of this enzyme reside at the dimer interface. Once the enzyme dissociates, the enzyme activity is lost. In this paper, we investigated the roles of amino acid residues at the dimer interface regarding the dimerization, protein stability and/or enzyme activity of ODC. A multiple sequence alignment of ODC and its homologous protein antizyme inhibitor revealed that 5 of 9 residues (residues 165, 277, 331, 332 and 389) are divergent, whereas 4 (134, 169, 294 and 322) are conserved. Analytical ultracentrifugation analysis suggested that some dimer-interface amino acid residues contribute to formation of the dimer of ODC and that this dimerization results from the cooperativity of these interface residues. The quaternary structure of the sextuple mutant Y331S/Y389D/R277S/D332E/V322D/D134A was changed to a monomer rather than a dimer, and the Kd value of the mutant was 52.8 µM, which is over 500-fold greater than that of the wild-type ODC (ODC_WT). In addition, most interface mutants showed low but detectable or negligible enzyme activity. Therefore, the protein stability of these interface mutants was measured by differential scanning calorimetry. These results indicate that these dimer-interface residues are important for dimer formation and, as a consequence, are critical for enzyme catalysis.


Assuntos
Ornitina Descarboxilase/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Dimerização , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica
19.
Chem Sci ; 5(4): 1642-1649, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24999381

RESUMO

IspG and IspH are proteins that are involved in isoprenoid biosynthesis in most bacteria as well as in malaria parasites and are important drug targets. They contain cubane-type 4Fe-4S clusters that are involved in unusual 2H+/2e- reductions. Here, we report the results of electron paramagnetic resonance spectroscopic investigations of the binding of amino- and thiolo-HMBPP (HMBPP=E-1-hydroxy-2-methyl-but-2-enyl 4-diphosphate) IspH substrate-analog inhibitors to both proteins, as well as the binding of HMBPP and an acetylene diphosphate inhibitor, to IspG. The results show that amino-HMBPP binds to reduced IspH by Fe-C π-bonding with the olefinic carbons interacting with the unique 4th Fe in the 4Fe-4S cluster, quite different to the direct Fe-N ligation seen with the oxidized protein. No such π-complex is observed when amino-HMBPP binds to reduced IspG. No EPR signal is observed with IspH in the presence of dithionite and thiolo-HMBPP, suggesting that the 4Fe-4S cluster is not reduced, consistent with the presence of a 420 nm feature in the absorption spectrum (characteristic of an oxidized cluster). However, with IspG, the EPR spectrum in the presence of dithionite and thiolo-HMBPP is very similar to that seen with HMBPP. The binding of HMBPP to IspG was studied using hyperfine sublevel correlation spectroscopy with 17O and 13C labeled samples: the results rule out direct Fe-O bonding and indicate π-bonding. Finally, the binding to IspG of a potent acetylene diphosphate inhibitor was studied by using electron-nuclear double resonance spectroscopy with 13C labeled ligands: the large hyperfine couplings indicate strong Fe-C π-bonding with the acetylenic group. These results illustrate a remarkable diversity in binding behavior for HMBPP-analog inhibitors, opening up new routes to inhibitor design of interest in the context of anti-bacterial and anti-malarial drug discovery, as well as "cubane-type" metallo-biochemistry, in general.

20.
Proc Natl Acad Sci U S A ; 111(25): E2530-9, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24927548

RESUMO

We used in silico methods to screen a library of 1,013 compounds for possible binding to the allosteric site in farnesyl diphosphate synthase (FPPS). Two of the 50 predicted hits had activity against either human FPPS (HsFPPS) or Trypanosoma brucei FPPS (TbFPPS), the most active being the quinone methide celastrol (IC50 versus TbFPPS ∼ 20 µM). Two rounds of similarity searching and activity testing then resulted in three leads that were active against HsFPPS with IC50 values in the range of ∼ 1-3 µM (as compared with ∼ 0.5 µM for the bisphosphonate inhibitor, zoledronate). The three leads were the quinone methides taxodone and taxodione and the quinone arenarone, compounds with known antibacterial and/or antitumor activity. We then obtained X-ray crystal structures of HsFPPS with taxodione+zoledronate, arenarone+zoledronate, and taxodione alone. In the zoledronate-containing structures, taxodione and arenarone bound solely to the homoallylic (isopentenyl diphosphate, IPP) site, not to the allosteric site, whereas zoledronate bound via Mg(2+) to the same site as seen in other bisphosphonate-containing structures. In the taxodione-alone structure, one taxodione bound to the same site as seen in the taxodione+zoledronate structure, but the second located to a more surface-exposed site. In differential scanning calorimetry experiments, taxodione and arenarone broadened the native-to-unfolded thermal transition (Tm), quite different to the large increases in ΔTm seen with biphosphonate inhibitors. The results identify new classes of FPPS inhibitors, diterpenoids and sesquiterpenoids, that bind to the IPP site and may be of interest as anticancer and antiinfective drug leads.


Assuntos
Diterpenos/química , Inibidores Enzimáticos/química , Geraniltranstransferase/antagonistas & inibidores , Geraniltranstransferase/química , Hemiterpenos/química , Compostos Organofosforados/química , Sítio Alostérico , Anti-Infecciosos/química , Antineoplásicos/química , Linhagem Celular Tumoral , Cristalografia por Raios X , Humanos , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química , Trypanosoma brucei brucei/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...