Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955203

RESUMO

Two mesomechanics models were analyzed in an attempt to reveal the relationship between stored energy and back stress. It has been indicated that the portion of elastic stored energy due to residual microstresses (ESR) is closely related to intergranular back stress (Xinter), and the stored energy of dislocations inside grains (ESD) can be estimated with the plastic work of intragranular back stress (Xintra). Then, the evolution of back stress during cyclic loading was studied, and the plastic work of back stress (WpB) was calculated with the low cycle fatigue experimental data of Ti-6Al-4V. The result shows that WpB is partially released at every reverse loading, sufficient to reproduce the evolution of stored energy correctly under cyclic loading. The study also reveals that partially released energy is related to the decrease of Xinter at the initial state of reversal loading resulting from the reduction of the plastic strain incompatibility between grains.

2.
Materials (Basel) ; 15(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35744328

RESUMO

Damage detection and the classification of carbon fiber-reinforced composites using non-destructive testing (NDT) techniques are of great importance. This paper applies an acoustic emission (AE) technique to obtain AE data from three tensile damage tests determining fiber breakage, matrix cracking, and delamination. This article proposes a deep learning approach that combines a state-of-the-art deep learning technique for time series classification: the InceptionTime model with acoustic emission data for damage classification in composite materials. Raw AE time series and frequency-domain sequence data are used as the input for the InceptionTime network, and both obtain very high classification performances, achieving high accuracy scores of about 99%. The InceptionTime network produces better training, validation, and test accuracy with the raw AE time series data than it does with the frequency-domain sequence data. Simultaneously, the InceptionTime model network shows its potential in dealing with data imbalances.

3.
Materials (Basel) ; 15(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35208021

RESUMO

This study investigated the mechanism of delamination damage in the double cantilever beam (DCB) standard test by the use of the strain energy release rate. The curve of the strain energy release rate was verified by the Rise Angle (RA) method. For this purpose, 24-layer carbon fiber/epoxy multidirectional laminates with interface orientations of 0°, 30°, 45°, and 60° were fabricated according to the standard ASTM D5528(13). In the course of this test, acoustic emission (AE) was used for real-time monitoring, and combined with micro visualization, the damage mechanism of composite multidirectional laminates was studied at multiple scales. Combining the AE detection results with micro visualization, it is found that the AE parameters and the damage to multidirectional laminates could realize a one-to-one correspondence. Through the study of the variation of the RA value, load, and strain energy release rate with the crack length, it is proved that the AE parameters can effectively characterize the initiation of delamination damage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...