Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 760, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909165

RESUMO

Although the chloroplast genome (cpDNA) of higher plants is known to exist as a large protein-DNA complex called 'plastid nucleoid', researches on its DNA state and regulatory elements are limited. In this study, we performed the assay for transposase-accessible chromatin sequencing (ATAC-seq) on five common tissues across five grasses, and found that the accessibility of different regions in cpDNA varied widely, with the transcribed regions being highly accessible and accessibility patterns around gene start and end sites varying depending on the level of gene expression. Further analysis identified a total of 3970 putative protein binding footprints on cpDNAs of five grasses. These footprints were enriched in intergenic regions and co-localized with known functional elements. Footprints and their flanking accessibility varied dynamically among tissues. Cross-species analysis showed that footprints in coding regions tended to overlap non-degenerate sites and contain a high proportion of highly conserved sites, indicating that they are subject to evolutionary constraints. Taken together, our results suggest that the accessibility of cpDNA has biological implications and provide new insights into the transcriptional regulation of chloroplasts.


Assuntos
Genoma de Cloroplastos , Poaceae , Poaceae/genética , DNA de Cloroplastos/genética , Regulação da Expressão Gênica de Plantas , Cloroplastos/genética , Cloroplastos/metabolismo
2.
Nat Commun ; 14(1): 7501, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980346

RESUMO

Panicle architecture is a key determinant of rice grain yield and is mainly determined at the 1-2 mm young panicle stage. Here, we investigated the transcriptome of the 1-2 mm young panicles from 275 rice varieties and identified thousands of genes whose expression levels were associated with panicle traits. Multimodel association studies suggested that many small-effect genetic loci determine spikelet per panicle (SPP) by regulating the expression of genes associated with panicle traits. We found that alleles at cis-expression quantitative trait loci of SPP-associated genes underwent positive selection, with a strong preference for alleles increasing SPP. We further developed a method that integrates the associations of cis- and trans-expression components of genes with traits to identify causal genes at even small-effect loci and construct regulatory networks. We identified 36 putative causal genes of SPP, including SDT (MIR156j) and OsMADS17, and inferred that OsMADS17 regulates SDT expression, which was experimentally validated. Our study reveals the impact of regulatory variants on rice panicle architecture and provides new insights into the gene regulatory networks of panicle traits.


Assuntos
Oryza , Transcriptoma , Transcriptoma/genética , Oryza/genética , Oryza/metabolismo , Redes Reguladoras de Genes , Perfilação da Expressão Gênica , Locos de Características Quantitativas/genética
3.
Nurs Open ; 10(4): 2349-2356, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36385582

RESUMO

AIM: To investigate the relationship between the position of the midline catheter tip and the frequency and type of complications associated with its placement. DESIGN: A cohort study was performed on patients between May 2018 and December 2021 who underwent midline catheter placement at our institution. Patients were divided into two groups, superficial implementation and deep implementation, based on the midline catheter tip location relative to the clavicle. METHODS: Clinical data and outcome parameters, including the numbers and types of midline catheter-related complications, day of occurrence and catheter indwell duration, were recorded. RESULTS: Catheter-related complications occurred in 14 individuals. Compared with the superficial implementation group, the incidence of complications in the deep catheterization group was significantly reduced, with a delayed first occurrence time, and a prolonged catheter indwelling time. The results suggested that locating the midline catheter tip in the distal segment of the axillary vein may reduce catheter-related complication incidence and prolong the indwelling duration.


Assuntos
Cateterismo , Cateteres de Demora , Humanos , Idoso , Estudos de Coortes , Cateteres de Demora/efeitos adversos , Veia Axilar , Complicações Pós-Operatórias/etiologia
4.
Genome Biol ; 23(1): 233, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36345039

RESUMO

BACKGROUND: Regulation of gene expression plays an essential role in controlling the phenotypes of plants. Brassica napus (B. napus) is an important source for the vegetable oil in the world, and the seed oil content is an important trait of B. napus. RESULTS: We perform a comprehensive analysis of the transcriptional variability in the seeds of B. napus at two developmental stages, 20 and 40 days after flowering (DAF). We detect 53,759 and 53,550 independent expression quantitative trait loci (eQTLs) for 79,605 and 76,713 expressed genes at 20 and 40 DAF, respectively. Among them, the local eQTLs are mapped to the adjacent genes more frequently. The adjacent gene pairs are regulated by local eQTLs with the same open chromatin state and show a stronger mode of expression piggybacking. Inter-subgenomic analysis indicates that there is a feedback regulation for the homoeologous gene pairs to maintain partial expression dosage. We also identify 141 eQTL hotspots and find that hotspot87-88 co-localizes with a QTL for the seed oil content. To further resolve the regulatory network of this eQTL hotspot, we construct the XGBoost model using 856 RNA-seq datasets and the Basenji model using 59 ATAC-seq datasets. Using these two models, we predict the mechanisms affecting the seed oil content regulated by hotspot87-88 and experimentally validate that the transcription factors, NAC13 and SCL31, positively regulate the seed oil content. CONCLUSIONS: We comprehensively characterize the gene regulatory features in the seeds of B. napus and reveal the gene networks regulating the seed oil content of B. napus.


Assuntos
Brassica napus , Brassica napus/genética , Brassica napus/metabolismo , Redes Reguladoras de Genes , Sementes/genética , Sementes/metabolismo , Locos de Características Quantitativas , Óleos de Plantas/metabolismo
5.
Mol Plant ; 14(9): 1584-1599, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34214659

RESUMO

Interpreting the functional impacts of genetic variants (GVs) is an important challenge for functional genomic studies in crops and next-generation breeding. Previous studies in rice (Oryza sativa) have focused mainly on the identification of GVs, whereas systematic functional annotation of GVs has not yet been performed. Here, we present a functional impact map of GVs in rice. We curated haplotype information for 17 397 026 GVs from sequencing data of 4726 rice accessions. We quantitatively evaluated the effects of missense mutations in coding regions in each haplotype based on the conservation of amino acid residues and obtained the effects of 918 848 non-redundant missense GVs. Furthermore, we generated high-quality chromatin accessibility (CA) data from six representative rice tissues and used these data to train deep convolutional neural network models to predict the impacts of 5 067 405 GVs for CA in regulatory regions. We characterized the functional properties and tissue specificity of the GV effects and found that large-effect GVs in coding and regulatory regions may be subject to selection in different directions. Finally, we demonstrated how the functional impact map could be used to prioritize causal variants in mapping populations. This impact map will be a useful resource for accelerating gene cloning and functional studies in rice, and can be freely queried in RiceVarMap V2.0 (http://ricevarmap.ncpgr.cn).


Assuntos
Bases de Dados de Ácidos Nucleicos , Variação Genética , Genoma de Planta , Oryza/genética , Genótipo , Haplótipos , Mutação INDEL , Polimorfismo de Nucleotídeo Único
6.
Nucleic Acids Res ; 49(W1): W523-W529, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34037796

RESUMO

Characterizing regulatory effects of genomic variants in plants remains a challenge. Although several tools based on deep-learning models and large-scale chromatin-profiling data have been available to predict regulatory elements and variant effects, no dedicated tools or web services have been reported in plants. Here, we present PlantDeepSEA as a deep learning-based web service to predict regulatory effects of genomic variants in multiple tissues of six plant species (including four crops). PlantDeepSEA provides two main functions. One is called Variant Effector, which aims to predict the effects of sequence variants on chromatin accessibility. Another is Sequence Profiler, a utility that performs 'in silico saturated mutagenesis' analysis to discover high-impact sites (e.g., cis-regulatory elements) within a sequence. When validated on independent test sets, the area under receiver operating characteristic curve of deep learning models in PlantDeepSEA ranges from 0.93 to 0.99. We demonstrate the usability of the web service with two examples. PlantDeepSEA could help to prioritize regulatory causal variants and might improve our understanding of their mechanisms of action in different tissues in plants. PlantDeepSEA is available at http://plantdeepsea.ncpgr.cn/.


Assuntos
Variação Genética , Genoma de Planta , Sequências Reguladoras de Ácido Nucleico , Software , Cromatina , Aprendizado Profundo , Genes de Plantas , Genômica , Internet , Oryza/genética , Plantas/genética , Polimorfismo Genético , Locos de Características Quantitativas , Zea mays/genética
7.
New Phytol ; 227(1): 65-83, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32129897

RESUMO

Lamin proteins in animals are implicated in important nuclear functions, including chromatin organization, signalling transduction, gene regulation and cell differentiation. Nuclear Matrix Constituent Proteins (NMCPs) are lamin analogues in plants, but their regulatory functions remain largely unknown. We report that OsNMCP1 is localized at the nuclear periphery in rice (Oryza sativa) and induced by drought stress. OsNMCP1 overexpression resulted in a deeper and thicker root system, and enhanced drought resistance compared to the wild-type control. An assay for transposase accessible chromatin with sequencing (ATAC-seq) analysis revealed that OsNMCP1-overexpression altered chromatin accessibility in hundreds of genes related to drought resistance and root growth, including OsNAC10, OsERF48, OsSGL, SNAC1 and OsbZIP23. OsNMCP1 can interact with SWITCH/SUCROSE NONFERMENTING (SWI/SNF) chromatin remodelling complex subunit OsSWI3C. The reported drought resistance or root growth-related genes that were positively regulated by OsNMCP1 were negatively regulated by OsSWI3C under drought stress conditions, and OsSWI3C overexpression led to decreased drought resistance. We propose that the interaction between OsNMCP1 and OsSWI3C under drought stress conditions may lead to the release of OsSWI3C from the SWI/SNF gene silencing complex, thus changing chromatin accessibility in the genes related to root growth and drought resistance.


Assuntos
Oryza , Cromatina , Secas , Regulação da Expressão Gênica de Plantas , Laminas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética
8.
Mol Biol Evol ; 35(1): 16-26, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29029269

RESUMO

Cucurbitaceae plants are of considerable biological and economic importance, and genomes of cucumber, watermelon, and melon have been sequenced. However, a comparative genomics exploration of their genome structures and evolution has not been available. Here, we aimed at performing a hierarchical inference of genomic homology resulted from recursive paleopolyploidizations. Unexpectedly, we found that, shortly after a core-eudicot-common hexaploidy, a cucurbit-common tetraploidization (CCT) occurred, overlooked by previous reports. Moreover, we characterized gene loss (and retention) after these respective events, which were significantly unbalanced between inferred subgenomes, and between plants after their split. The inference of a dominant subgenome and a sensitive one suggested an allotetraploid nature of the CCT. Besides, we found divergent evolutionary rates among cucurbits, and after doing rate correction, we dated the CCT to be 90-102 Ma, likely common to all Cucurbitaceae plants, showing its important role in the establishment of the plant family.


Assuntos
Cucurbitaceae/genética , Análise de Sequência de DNA/métodos , Sequência de Bases/genética , Mapeamento Cromossômico/métodos , Evolução Molecular , Variação Genética/genética , Genoma de Planta/genética , Genômica/métodos , Taxa de Mutação , Filogenia , Poliploidia , Tetraploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...