Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Complement Ther Clin Pract ; 55: 101849, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522328

RESUMO

BACKGROUND AND PURPOSE: Lung cancer surgery patients experience severe physical and mental symptoms, which seriously affect their quality of life and prognosis. Mindful breathing training is a promising strategy to improve their symptoms, but its effectiveness is affected by training compliance, and diary-based rehabilitation instruction has been shown to help improve training compliance. Therefore, the aim of this study was to evaluate the effects of mindful breathing training combined with diary-based rehabilitation guidance on improving perioperative outcomes in lung cancer surgery patients. MATERIALS AND METHODS: This single-center, assessor-blinded, prospective, three-arm randomized controlled trial was conducted from November 1, 2021 to November 1, 2022. Patients diagnosed with primary non-small cell lung cancer and scheduled for thoracoscopic surgery were randomly allocated to the combined intervention group, the mindful breathing group or the control group, with 34 patients in each group. The control group received routine care, while the mindful breathing group received mindful breathing training and routine care. The combined intervention group received both mindful breathing training and diary-based rehabilitation guidance, along with routine care. RESULTS: The per-protocol analysis revealed that patients in the mindful breathing group experienced statistically significant improvements in dyspnea, fatigue and anxiety. Patients in the combined intervention group had statistically significant improvements in dyspnea, fatigue, anxiety, depression, exercise self-efficacy and training compliance. CONCLUSION: This study provides evidence that mindful breathing training combined with diary-based rehabilitation guidance can be effective in improving perioperative outcomes in lung cancer patients. It can be applied in clinical practice in the future.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/cirurgia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Qualidade de Vida , Estudos Prospectivos , Dispneia
3.
J Chromatogr A ; 1718: 464727, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359689

RESUMO

In this study, we employed a melamine sponge (MS) as the skeleton material and utilized carbonized ZIF-8 (CZIF-8) and chitosan (CS) as the raw materials to prepare CZIF-8/CS-MS, a novel material featuring a three-dimensional interconnected porous network. The resulting CZIF-8/CS-MS material possesses a unique porous structure, significant specific surface area and abundant active sites. These characteristics make CZIF-8/CS-MS a promising absorbent for selective purification of plant growth regulators (PGRs) including 1-naphthlcetic acid (NAA), naphthoxyacetic acid (NOA), 4-chlorophenoxyacetic acid (4-CPA), 2,4-dichlorophenoxyacetic acid (2,4-D). After optimizing the extraction conditions, excellent linearity (r > 0.9994) was observed within a wide linear range of 1-100 ng/mL using ultra high performance liquid chromatography-tandem quadrupole mass spectrometry. The detection limits (LODs) and limits of quantification (LOQs) were found to be in the range of 0.013-0.154 ng/mL and 0.044-0.515 ng/mL, respectively. Additionally, the relative recovery of Schisandra chinensis fruit samples was determined to be 89.7-99.4 %, with a relative standard deviation (RSDs) of ≤ 8.4 % (n = 3). Compared to other methods, this approach offers a multitude of benefits, which include but are not limited to exceptional sensitivity, reduced sample volume requirements, low LODs, a comparable linear range, and high reproducibility. The findings of this study pave the way for exploring novel functionalized sponge columns, which leverage the integration of nano-sorbent materials and coating agents, for the purpose of analyzing PGRs within intricate matrix samples.


Assuntos
Quitosana , Schisandra , Triazinas , Reguladores de Crescimento de Plantas/análise , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Extração em Fase Sólida/métodos
4.
Gene Ther ; 31(5-6): 263-272, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38321198

RESUMO

Patients with sialidosis (mucolipidosis type I) type I typically present with myoclonus, seizures, ataxia, cherry-red spots, and blindness because of mutations in the neuraminidase 1 (NEU1) gene. Currently, there is no treatment for sialidosis. In this study, we developed an adeno-associated virus (AAV)-mediated gene therapy for a Neu1 knockout (Neu1-/-) mouse model of sialidosis. The vector, AAV9-P3-NP, included the human NEU1 promoter, NEU1 cDNA, IRES, and CTSA cDNA. Untreated Neu1-/- mice showed astrogliosis and microglial LAMP1 accumulation in the nervous system, including brain, spinal cord, and dorsal root ganglion, together with impaired motor function. Coexpression of NEU1 and protective protein/cathepsin A (PPCA) in neonatal Neu1-/- mice by intracerebroventricular injection, and less effective by facial vein injection, decreased astrogliosis and LAMP1 accumulation in the nervous system and improved rotarod performance of the treated mice. Facial vein injection also improved the grip strength and survival of Neu1-/- mice. Therefore, cerebrospinal fluid delivery of AAV9-P3-NP, which corrects the neurological deficits of mice with sialidosis, could be a suitable treatment for patients with sialidosis type I. After intracerebroventricular or facial vein injection of AAV vectors, NEU1 and PPCA are expressed together. PPCA-protected NEU1 is then sent to lysosomes, where ß-Gal binds to this complex to form a multienzyme complex in order to execute its function.


Assuntos
Dependovirus , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos , Camundongos Knockout , Mucolipidoses , Neuraminidase , Animais , Terapia Genética/métodos , Neuraminidase/genética , Neuraminidase/metabolismo , Camundongos , Dependovirus/genética , Mucolipidoses/terapia , Mucolipidoses/genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Catepsina A/genética , Catepsina A/metabolismo , Humanos , Encéfalo/metabolismo
5.
Acta Biomater ; 173: 325-335, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38000526

RESUMO

Plasma membrane isolation is a foundational process in membrane proteomic research, cellular vesicle studies, and biomimetic nanocarrier development, yet separation processes for this outermost layer are cumbersome and susceptible to impurities and low yield. Herein, we demonstrate that cellular cytosol can be chemically polymerized for decoupling and isolation of plasma membrane within minutes. A rapid, non-disruptive in situ polymerization technique is developed with cell membrane-permeable polyethyleneglycol-diacrylate (PEG-DA) and a blue-light-sensitive photoinitiator, lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP). The photopolymerization chemistry allows for precise control of intracellular polymerization and tunable confinement of cytosolic molecules. Upon cytosol solidification, plasma membrane proteins and vesicles are rapidly derived and purified as nucleic acids and intracellular proteins as small as 15 kDa are stably entrapped for removal. The polymerization chemistry and membrane derivation technique are broadly applicable to primary and fragile cell types, enabling facile membrane vesicle extraction from shorted-lived neutrophils and human primary CD8 T cells. The study demonstrates tunable intracellular polymerization via optimized live cell chemistry, offers a robust membrane isolation methodology with broad biomedical utility, and reveals insights on molecular crowding and confinement in polymerized cells. STATEMENT OF SIGNIFICANCE: Isolating the minute fraction of plasma membrane proteins and vesicles requires extended density gradient ultracentrifugation processes, which are susceptible to low yield and impurities. The present work demonstrates that the membrane isolation process can be vastly accelerated via a rapid, non-disruptive intracellular polymerization approach that decouples cellular cytosols from the plasma membrane. Following intracellular polymerization, high-yield plasma membrane proteins and vesicles can be derived from lysis buffer and sonication treatment, respectively. And the intracellular content entrapped within the polymerized hydrogel is readily removed within minutes. The technique has broad utility in membrane proteomic research, cellular vesicle studies, and biomimetic materials development, and the work offers insights on intracellular hydrogel-mediated molecular confinement.


Assuntos
Proteínas de Membrana , Proteômica , Humanos , Polimerização , Membrana Celular , Hidrogéis/química
6.
Heliyon ; 9(7): e18082, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37539272

RESUMO

Niemann-Pick disease type C (NPC) is caused by a deficiency of the NPC1 or NPC2 gene, leading to storages of unesterified cholesterol and sphingolipids. Cerebellar ataxia is a main symptom of NPC and the deep cerebellar nuclei (DCN) is the sole signal output of the cerebellum. In this study, we explored the pathological changes in DCN neurons of Npc1 knockout mice (Npc1-). We first demonstrated that DCN neurons of Npc1- mice had prominent ganglioside GM2 accumulation in the late endosomes but not in the lysosomes. More importantly, Flot2 expression, a marker for the lipid rafts, was lost. Single-nucleus RNA sequencing analysis revealed a generalized reduction in gene expression in DCN neurons, though Camk1d, encoding one of the Ca2+/calmodulin-dependent protein kinases (CaMKs), increased in expression. We treated Npc1- mice with CaMK inhibitor KN-93, but CaMK1D expression increased further. We also fed Npc1- mice with two medications for NPC. We found that miglustat, a sphingolipid synthesis inhibitor, increased the expression of Flot2. Moreover, N-acetyl l-leucine (NALL), an experimental medicine for NPC, recovered Flot2 expression. Therefore, our data suggest that in Npc1- mice, GM2 sequestration and the loss of lipid rafts lead to cell dysfunction and symptoms of NPC.

7.
Am J Chin Med ; 51(5): 1189-1209, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37314412

RESUMO

HIV mutations occur frequently despite the substantial success of combination antiretroviral therapy, which significantly impairs HIV progression. Failure to develop specific vaccines, the occurrence of drug-resistant strains, and the high incidence of adverse effects due to combination antiviral therapy regimens call for novel and safer antivirals. Natural products are an important source of new anti-infective agents. For instance, curcumin inhibits HIV and inflammation in cell culture assays. Curcumin, the principal constituent of the dried rhizomes of Curcuma longa L. (turmeric), is known as a strong anti-oxidant and anti-inflammatory agent with different pharmacological effects. This work aims to assess curcumin's inhibitory effects on HIV in vitro and to explore the underpinning mechanism, focusing on CCR5 and the transcription factor forkhead box protein P3 (FOXP3). First, curcumin and the RT inhibitor zidovudine (AZT) were evaluated for their inhibitory properties. HIV-1 pseudovirus infectivity was determined by green fluorescence and luciferase activity measurements in HEK293T cells. AZT was used as a positive control that inhibited HIV-1 pseudoviruses dose-dependently, with IC50 values in the nanomolar range. Then, a molecular docking analysis was carried out to assess the binding affinities of curcumin for CCR5 and HIV-1 RNase H/RT. The anti-HIV activity assay showed that curcumin inhibited HIV-1 infection, and the molecular docking analysis revealed equilibrium dissociation constants of [Formula: see text]9.8[Formula: see text]kcal/mol and [Formula: see text]9.3[Formula: see text]kcal/mol between curcumin and CCR5 and HIV-1 RNase H/RT, respectively. To examine curcumin's anti-HIV effect and its mechanism in vitro, cell cytotoxicity, transcriptome sequencing, and CCR5 and FOXP3 amounts were assessed at different concentrations of curcumin. In addition, human CCR5 promoter deletion constructs and the FOXP3 expression plasmid pRP-FOXP3 (with an EGFP tag) were generated. Whether FOXP3 DNA binding to the CCR5 promoter was blunted by curcumin was examined using transfection assays employing truncated CCR5 gene promoter constructs, a luciferase reporter assay, and a chromatin immunoprecipitation (ChIP) assay. Furthermore, micromolar concentrations of curcumin inactivated the nuclear transcription factor FOXP3, which resulted in decreased expression of CCR5 in Jurkat cells. Moreover, curcumin inhibited PI3K-AKT activation and its downstream target FOXP3. These findings provide mechanistic evidence encouraging further assessment of curcumin as a dietary agent used to reduce the virulence of CCR5-tropic HIV-1. Curcumin-mediated FOXP3 degradation was also reflected in its functions, namely, CCR5 promoter transactivation and HIV-1 virion production. Furthermore, curcumin inhibition of CCR5 and HIV-1 might constitute a potential therapeutic strategy for reducing HIV progression.


Assuntos
Curcumina , Infecções por HIV , HIV-1 , Humanos , Curcumina/farmacologia , Curcumina/química , Curcuma/química , HIV-1/genética , HIV-1/metabolismo , Células HEK293 , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Quimiocinas , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Luciferases , Ribonuclease H/farmacologia , Fatores de Transcrição Forkhead/farmacologia , Receptores CCR5/genética , Receptores CCR5/metabolismo
8.
Adv Sci (Weinh) ; 10(17): e2206521, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37092580

RESUMO

The highly conserved matrix protein 2 ectodomain (M2e) of influenza viruses presents a compelling vaccine antigen candidate for stemming the pandemic threat of the mutation-prone pathogen, yet the low immunogenicity of the diminutive M2e peptide renders vaccine development challenging. A highly potent M2e nanoshell vaccine that confers broad and durable influenza protectivity under a single vaccination is shown. Prepared via asymmetric ionic stabilization for nanoscopic curvature formation, polymeric nanoshells co-encapsulating high densities of M2e peptides and stimulator of interferon genes (STING) agonists are prepared. Robust and long-lasting protectivity against heterotypic influenza viruses is achieved with a single administration of the M2e nanoshells in mice. Mechanistically, molecular adjuvancy by the STING agonist and nanoshell-mediated prolongation of M2e antigen exposure in the lymph node follicles synergistically contribute to the heightened anti-M2e humoral responses. STING agonist-triggered T cell helper functions and extended residence of M2e peptides in the follicular dendritic cell network provide a favorable microenvironment that induces Th1-biased antibody production against the diminutive antigen. These findings highlight a versatile nanoparticulate design that leverages innate immune pathways for enhancing the immunogenicity of weak immunogens. The single-shot nanovaccine further provides a translationally viable platform for pandemic preparedness.


Assuntos
Vacinas contra Influenza , Influenza Humana , Nanoconchas , Camundongos , Animais , Humanos , Vacinação , Antígenos , Peptídeos , Linfonodos
9.
Nat Commun ; 14(1): 593, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737616

RESUMO

Covalent organic frameworks (COFs) are an emerging type of crystalline and porous photocatalysts for hydrogen evolution, however, the overall water splitting activity of COFs is rarely known. In this work, we firstly realized overall water splitting activity of ß-ketoamine COFs by systematically engineering N-sites, architecture, and morphology. By in situ incorporating sub-nanometer platinum (Pt) nanoparticles co-catalyst into the pores of COFs nanosheets, both Pt@TpBpy-NS and Pt@TpBpy-2-NS show visible-light-driven overall water splitting activity, with the optimal H2 and O2 evolution activities of 9.9 and 4.8 µmol in 5 h for Pt@TpBpy-NS, respectively, and a maximum solar-to-hydrogen efficiency of 0.23%. The crucial factors affecting the activity including N-sites position, nano morphology, and co-catalyst distribution were systematically explored. Further mechanism investigation reveals the tiny diversity of N sites in COFs that induces great differences in electron transfer as well as reaction potential barriers.

10.
Adv Sci (Weinh) ; 10(9): e2204175, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36628538

RESUMO

Natural and artificial cells are two common chassis in synthetic biology. Natural cells can perform complex tasks through synthetic genetic constructs, but their autonomous replication often causes safety concerns for biomedical applications. In contrast, artificial cells based on nonreplicating materials, albeit possessing reduced biochemical complexity, provide more defined and controllable functions. Here, for the first time, the authors create hybrid material-cell entities termed Cyborg Cells. To create Cyborg Cells, a synthetic polymer network is assembled inside each bacterium, rendering them incapable of dividing. Cyborg Cells preserve essential functions, including cellular metabolism, motility, protein synthesis, and compatibility with genetic circuits. Cyborg Cells also acquire new abilities to resist stressors that otherwise kill natural cells. Finally, the authors demonstrate the therapeutic potential by showing invasion into cancer cells. This work establishes a new paradigm in cellular bioengineering by exploiting a combination of intracellular man-made polymers and their interaction with the protein networks of living cells.


Assuntos
Bioengenharia , Biologia Sintética , Humanos , Bactérias , Polímeros
11.
J Colloid Interface Sci ; 633: 233-242, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36446216

RESUMO

The construction of tightly integrated heterostructures with metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) has been confirmed to be an effective way for improved hydrogen evolution. However, the reported tightly integrated MOF/COF hybrids were usually limited to the covalent connection of COFs with aldehyde groups and NH2-MOF via Schiff base reaction, restricting the development of MOF/COF hybrids. Herein, a covalent triazine framework (CTF-1), a subtype of crystalline COFs, was integrated with a conductive two-dimensional (2D) MOF (Ni-CAT-1) by a novel coordinating connection mode for significantly enhanced visible-light-driven hydrogen evolution. The terminal amidine groups in the CTF-1 layers offer dual N sites for the coordination of metal ions, which provides the potential of coordinating connection between CTF-1 and Ni-CAT-1. The conductive 2D Ni-CAT-1 in Ni-CAT-1/CTF-1 hybrids effectively facilitates the separation of photogenerated carriers of CTF-1 component, and the resultant hybrid materials show significantly enhanced photocatalytic hydrogen evolution activity. In particular, the Ni-CAT-1/CTF-1 (1:19) sample exhibits the maximum hydrogen evolution rate of 8.03 mmol g-1h-1, which is about four times higher than that of the parent CTF-1 (1.96 mmol g-1h-1). The enhanced photocatalytic activity of Ni-CAT-1/CTF-1 is mainly attributed to the incorporation of conductive MOF which leads to the formation of a Z-Scheme heterostructure, promoting the electron transfer in hybrid materials. The coordinating combination mode of Ni-CAT-1 and CTF-1 in this work provides a novel strategy for constructing tightly integrated MOF/COF hybrid materials.

12.
J Biomed Nanotechnol ; 18(2): 422-434, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35484755

RESUMO

Aim: To evaluate the protective effects of Platycladi Cacumen Carbonisata-derived nanoparticles (PCC-NPs) against 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced ulcerative colitis (UC) in rats. Methods: This study developed and characterized novel PCC-NPs synthesized by a green and simple pyrolysis process using Platycladi Cacumen (PC) as the sole precursor. The UC model prepared with rectal instillation of TNBS was used to evaluate the potential efficacy of PCC-NPs, and the underlying mechanisms were preliminarily explored from the perspective of anti-inflammatory and antioxidative stress for the first time. Results: PCC-NPs exhibited low cytotoxicity, good dispersibility and copious surface functional groups. Nanoparticles with diameters ranging from 40-60 nm mainly manifested a therapeutic effect by downregulating tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6) and upregulating interleukin-10 (IL-10). In addition, PCC-NPs relieved colon injury by inhibiting myeloperoxidase (MPO) activity, limiting the release of malondialdehyde (MDA) and increasing the activity of superoxide dismutase (SOD). Conclusion: Green synthetic PCC-NPs is a potential candidate as a complementary drug for intestinal inflammation of inflammatory bowel disease, and its regulatory mechanisms may be to balance the levels of pro-/anti-inflammatory cytokines and improve resistance to oxidative stress.


Assuntos
Colite Ulcerativa , Colite , Nanopartículas , Animais , Anti-Inflamatórios/efeitos adversos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Ratos , Trinitrobenzenos , Ácido Trinitrobenzenossulfônico/efeitos adversos
13.
Adv Sci (Weinh) ; 9(13): e2105506, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35246961

RESUMO

Membrane-lytic peptides offer broad synthetic flexibilities and design potential to the arsenal of anticancer therapeutics, which can be limited by cytotoxicity to noncancerous cells and induction of drug resistance via stress-induced mutagenesis. Despite continued research efforts on membrane-perforating peptides for antimicrobial applications, success in anticancer peptide therapeutics remains elusive given the muted distinction between cancerous and normal cell membranes and the challenge of peptide degradation and neutralization upon intravenous delivery. Using triple-negative breast cancer as a model, the authors report the development of a new class of anticancer peptides. Through function-conserving mutations, the authors achieved cancer cell selective membrane perforation, with leads exhibiting a 200-fold selectivity over non-cancerogenic cells and superior cytotoxicity over doxorubicin against breast cancer tumorspheres. Upon continuous exposure to the anticancer peptides at growth-arresting concentrations, cancer cells do not exhibit resistance phenotype, frequently observed under chemotherapeutic treatment. The authors further demonstrate efficient encapsulation of the anticancer peptides in 20 nm polymeric nanocarriers, which possess high tolerability and lead to effective tumor growth inhibition in a mouse model of MDA-MB-231 triple-negative breast cancer. This work demonstrates a multidisciplinary approach for enabling translationally relevant membrane-lytic peptides in oncology, opening up a vast chemical repertoire to the arms race against cancer.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Humanos , Camundongos , Peptídeos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo
14.
Pest Manag Sci ; 78(1): 329-335, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34523221

RESUMO

BACKGROUND: The use of chemical insecticides to control Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) is widespread, although it might exert a sublethal effect on its dominant parasitoid, Encarsia formosa Gahan (Hymenoptera: Aphelinidae). To investigate the sublethal effect of spirotetramat on E. formosa, we observed the ability of E. formosa to locate and handle the host, oviposit and preen after exposure to sublethal concentrations of spirotetramat. RESULTS: After exposure to spirotetramat at LC50 , the response time of E. formosa to the volatile reached 223.40 s and was significantly prolonged. Only 56.44% of the wasps were attracted by the volatile and the insect crawled the slowest among all of the treatments. The averages of oviposition posture adopted and host handled by each E. formosa in 1 h decreased significantly to 1.79 and 1.27, respectively. At the sublethal concentration of LC10 , 94.59% of the wasps were attracted by the volatile and the insect crawled the fastest. The average of host handled by each E. formosa was 3.92, and the frequency of drumming while walking and drumming the host was 12.34 times per second and 12.30 times per second, respectively, demonstrating a significant acceleration in these abilities. CONCLUSION: These findings demonstrate that spirotetramat induced hormesis in E. formosa on exposure to its LC10 concentration and accelerated its host locating, host handling and frequency of antennae drumming. These findings could assist in balancing the chemical and biological control of B. tabaci and enhancing the efficacy of E. formosa as a biocontrol agent. © 2021 Society of Chemical Industry.


Assuntos
Compostos Aza , Hemípteros , Vespas , Animais , Compostos Aza/toxicidade , Feminino , Compostos de Espiro , Taiwan
15.
Dalton Trans ; 50(35): 12215-12225, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34396380

RESUMO

A series of homodinuclear ß-diketone lanthanide(III) complexes, formulated as [(acac)4Ln2(L1)] (Ln3+ = Dy3+ (1), Tb3+ (2), and Gd3+ (3), respectively) were first synthesized based on a closed-macrocyclic ligand (H2L1) derived from the [2 + 2] cyclocondensation of 4-tert-butyl-2,6-diformylphenol and o-phenylenediamine in the presence of lanthanide acetylacetonates. Subsequently, by using the above compounds as building blocks to assemble directly with another Schiff base ligand, N,N'-bis(5-chlorosalicylidene)-o-phenylenediamine (H2L2), three new homodinuclear sandwich-type lanthanide complexes with the general formula [Ln2(L1)(L2)2] (Ln3+ = Dy3+ (4), Tb3+ (5), and Gd3+ (6), respectively) were further designed and prepared. Single-crystal X-ray analyses show that the central Ln3+ ion adopts a distorted square antiprism conformation with D4d local symmetry. Magnetic studies reveal ferromagnetic interaction between Dy3+ and Tb3+ centres and zero-field slow relaxation of magnetization for Dy complexes 1 and 4. The corresponding magneto-structural correlations of SMMs 1 and 4 were further discussed by theoretical calculations and with experimental outcomes.

16.
Environ Sci Technol ; 55(17): 11557-11567, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34431667

RESUMO

The lockdown due to COVID-19 created a rare opportunity to examine the nonlinear responses of secondary aerosols, which are formed through atmospheric oxidation of gaseous precursors, to intensive precursor emission reductions. Based on unique observational data sets from six supersites in eastern China during 2019-2021, we found that the lockdown caused considerable decreases (32-61%) in different secondary aerosol components in the study region because of similar-degree precursor reductions. However, due to insufficient combustion-related volatile organic compound (VOC) reduction, odd oxygen (Ox = O3 + NO2) concentration, an indicator of the extent of photochemical processing, showed little change and did not promote more decreases in secondary aerosols. We also found that the Chinese provinces and international cities that experienced reduced Ox during the lockdown usually gained a greater simultaneous PM2.5 decrease than other provinces and cities with an increased Ox. Therefore, we argue that strict VOC control in winter, which has been largely ignored so far, is critical in future policies to mitigate winter haze more efficiently by reducing Ox simultaneously.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , China , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Oxigênio , Material Particulado/análise , SARS-CoV-2
17.
Anal Chem ; 93(27): 9568-9574, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34210120

RESUMO

In this work, an original rolling-circle strand displacement amplification (RC-SDA) was developed by introducing a circle DNA with two recognition domains as a template instead of the limited liner DNA template in traditional strand displacement amplification (SDA), which displayed much shorter reaction time down to 30 min and quite higher conversion efficiency of more than 1.77 × 108 compared with those of traditional strand displacement amplification (SDA) and could be applied to construct a label-free biosensor for ultrasensitive detection of an HIV DNA fragment. Once the target HIV DNA fragment interacts with the template circle DNA, the RC-SDA could be activated to dramatically output amounts of mimic target DNA with the assistance of the Phi29 DNA polymerase and Nb.BbvCI enzyme. In application, while the output products were captured by the DNA tetrahedral nanoprobe (DTNP) modified electrode, the electrochemical tag silver nanoclusters (AgNCs) on DTNP would be released from the electrode surface, accompanied with an obviously decreased electrochemical signal. This way, the developed signal-off biosensor was successfully applied to realize the rapid and ultrasensitive detection of target HIV DNA fragment with a detection limit down to 0.21 fM, which exploits the new generation of a universal strategy beyond the traditional ones for applications in biosensing assay, clinic diagnosis, and DNA nanobiotechnology.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , DNA/genética , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico , Prata
18.
Mol Ther Methods Clin Dev ; 21: 299-314, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-33898629

RESUMO

Antigen-specific lung-resident memory T cells (TRMs) constitute the first line of defense that mediates rapid protection against respiratory pathogens and inspires novel vaccine designs against infectious pandemic threats, yet effective means of inducing TRMs, particularly via non-viral vectors, remain challenging. Here, we demonstrate safe and potent induction of lung-resident TRMs using a biodegradable polymeric nanoshell that co-encapsulates antigenic peptides and TLR9 agonist CpG-oligodeoxynucleotide (CpG-ODN) in a virus-mimicking structure. Through subcutaneous priming and intranasal boosting, the combinatorial nanoshell vaccine elicits prominent lung-resident CD4+ and CD8+ T cells that surprisingly show better durability than live viral infections. In particular, nanoshells containing CpG-ODN and a pair of conserved class I and II major histocompatibility complex-restricted influenza nucleoprotein-derived antigenic peptides are demonstrated to induce near-sterilizing immunity against lethal infections with influenza A viruses of different strains and subtypes in mice, resulting in rapid elimination of replicating viruses. We further examine the pulmonary transport dynamic and optimal composition of the nanoshell vaccine conducive for robust TRM induction as well as the benefit of subcutaneous priming on TRM replenishment. The study presents a practical vaccination strategy for inducing protective TRM-mediated immunity, offering a compelling platform and critical insights in the ongoing quest toward a broadly protective vaccine against universal influenza as well as other respiratory pathogens.

19.
Nano Lett ; 20(4): 2246-2256, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32160474

RESUMO

Many favorable anticancer treatments owe their success to the induction immunogenic cell death (ICD) in cancer cells, which results in the release of endogenous danger signals along with tumor antigens for effective priming of anticancer immunity. We describe a strategy to artificially induce ICD by delivering the agonist of stimulator of interferon genes (STING) into tumor cells using hollow polymeric nanoshells. Following intracellular delivery of exogenous adjuvant, subsequent cytotoxic treatment creates immunogenic cellular debris that spatiotemporally coordinate tumor antigens and STING agonist in a process herein termed synthetic immunogenic cell death (sICD). sICD is indiscriminate to the type of chemotherapeutics and enables colocalization of exogenously administered immunologic adjuvants and tumor antigens for enhanced antigen presentation and anticancer adaptive response. In three mouse tumor models, sICD enhances therapeutic efficacy and restrains tumor progression. The study highlights the benefit of delivering STING agonists to cancer cells, paving ways to new chemo-immunotherapeutic designs.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Morte Celular Imunogênica/efeitos dos fármacos , Proteínas de Membrana/agonistas , Nanoconchas/uso terapêutico , Neoplasias/terapia , Animais , Antineoplásicos Imunológicos/administração & dosagem , Linhagem Celular Tumoral , Progressão da Doença , Humanos , Imunoterapia , Camundongos Endogâmicos BALB C , Nanoconchas/administração & dosagem , Neoplasias/imunologia
20.
World J Gastroenterol ; 26(6): 645-656, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32103873

RESUMO

BACKGROUND: Reports on bacterial infection (BI) in decompensated cirrhosis (DC) is mainly from alcoholic cirrhosis. The role of BI as a trigger or complication of acute-on-chronic liver failure (ACLF) in patients with hepatitis B virus decompensated cirrhosis (HBV-DC) remains to be investigated. AIM: To investigate the impact of BI on the outcomes of the patients with HBV-DC admitted into the hospital with or without ACLF. METHODS: This retrospective study included patients with HBV-DC admitted to two tertiary centers in China. In-hospital overall survival, 90-d transplant-free survival, 5-year post-discharge survival, and cumulative incidence of ACLF were evaluated. Risk factors for death were analyzed considering liver transplantation as a competing event. RESULTS: A total of 1281 hospitalized HBV-DC patients were included; 284 had ACLF at admission. The overall prevalence of BI was 28.1%. The patients with BI had a significantly lower in-hospital survival and transplant-free 90-d survival than those without, in both the patients admitted with and without ACLF. The presence of BI significantly increased the risk of developing ACLF [sub-distribution hazard ratio (sHR) = 2.52, 95%CI: 1.75-3.61, P < 0.001] in the patients without ACLF. In the patients discharged alive, those who had an episode of BI had a significantly lower 5-year transplant-free survival. BI was an independent risk factor for death in the patients admitted without ACLF (sHR = 3.28, 95%CI: 1.93-5.57), while in ACLF admissions, the presence of pneumonia, but not other type of BI, independently increased the risk of death (sHR = 1.87, 95%CI: 1.24-2.82). CONCLUSION: BI triggers ACLF in patients with HBV-DC and significantly impairs short-term survival. HBV-DC patients should be monitored carefully for the development of BI, especially pneumonia, to avoid an adverse outcome.


Assuntos
Insuficiência Hepática Crônica Agudizada/mortalidade , Infecções Bacterianas/mortalidade , Vírus da Hepatite B , Hepatite B Crônica/mortalidade , Cirrose Hepática/mortalidade , Insuficiência Hepática Crônica Agudizada/microbiologia , Adulto , Infecções Bacterianas/complicações , China , Feminino , Hepatite B Crônica/microbiologia , Humanos , Cirrose Hepática/microbiologia , Transplante de Fígado , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...