Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 845314, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401633

RESUMO

TIFY proteins play crucial roles in plant abiotic and biotic stress responses. Our transcriptome data revealed several TIFY family genes with significantly upregulated expression under drought, salt, and ABA treatments. However, the functions of the GmTIFY family genes are still unknown in abiotic stresses. We identified 38 GmTIFY genes and found that TIFY10 homologous genes have the most duplication events, higher selection pressure, and more obvious response to abiotic stresses compared with other homologous genes. Expression pattern analysis showed that GmTIFY10e and GmTIFY10g genes were significantly induced by salt stress. Under salt stress, GmTIFY10e and GmTIFY10g transgenic Arabidopsis plants showed higher root lengths and fresh weights and had significantly better growth than the wild type (WT). In addition, overexpression of GmTIFY10e and GmTIFY10g genes in soybean improved salt tolerance by increasing the PRO, POD, and CAT contents and decreasing the MDA content; on the contrary, RNA interference plants showed sensitivity to salt stress. Overexpression of GmTIFY10e and GmTIFY10g in Arabidopsis and soybean could improve the salt tolerance of plants, while the RNAi of GmTIFY10e and GmTIFY10g significantly increased sensitivity to salt stress in soybean. Further analysis demonstrated that GmTIFY10e and GmTIFY10g genes changed the expression levels of genes related to the ABA signal pathway, including GmSnRK2, GmPP2C, GmMYC2, GmCAT1, and GmPOD. This study provides a basis for comprehensive analysis of the role of soybean TIFY genes in stress response in the future.

2.
Int J Mol Sci ; 22(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34948302

RESUMO

Calmodulin-binding protein 60 (CBP60) members constitute a plant-specific protein family that plays an important role in plant growth and development. In the soybean genome, nineteen CBP60 members were identified and analyzed for their corresponding sequences and structures to explore their functions. Among GmCBP60A-1, which primarily locates in the cytomembrane, was significantly induced by drought and salt stresses. The overexpression of GmCBP60A-1 enhanced drought and salt tolerance in Arabidopsis, which showed better state in the germination of seeds and the root growth of seedlings. In the soybean hairy roots experiment, the overexpression of GmCBP60A-1 increased proline content, lowered water loss rate and malondialdehyde (MDA) content, all of which likely enhanced the drought and salt tolerance of soybean seedlings. Under stress conditions, drought and salt response-related genes showed significant differences in expression in hairy root soybean plants of GmCBP60A-1-overexpressing and hairy root soybean plants of RNAi. The present study identified GmCBP60A-1 as an important gene in response to salt and drought stresses based on the functional analysis of this gene and its potential underlying mechanisms in soybean stress-tolerance.


Assuntos
Proteínas de Ligação a Calmodulina/genética , Glycine max/genética , Proteínas de Plantas/genética , Estresse Salino/genética , Arabidopsis/genética , Secas , Regulação da Expressão Gênica de Plantas/genética , Estudo de Associação Genômica Ampla/métodos , Plantas Geneticamente Modificadas/genética , Tolerância ao Sal/genética , Plântula/genética , Sementes/genética , Proteínas de Soja/genética , Estresse Fisiológico/genética
3.
Int J Mol Sci ; 20(23)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775269

RESUMO

Plants have a series of response mechanisms to adapt when they are subjected to external stress. Calcium-dependent protein kinases (CDPKs) in plants function against a variety of abiotic stresses. We screened 17 CDPKs from drought- and salt-induced soybean transcriptome sequences. The phylogenetic tree divided CDPKs of rice, Arabidopsis and soybean into five groups (I-V). Cis-acting element analysis showed that the 17 CDPKs contained some elements associated with drought and salt stresses. Quantitative real-time PCR (qRT-PCR) analysis indicated that the 17 CDPKs were responsive after different degrees of induction under drought and salt stresses. GmCDPK3 was selected as a further research target due to its high relative expression. The subcellular localization experiment showed that GmCDPK3 was located on the membrane of Arabidopsis mesophyll protoplasts. Overexpression of GmCDPK3 improved drought and salt resistance in Arabidopsis. In the soybean hairy roots experiment, the leaves of GmCDPK3 hairy roots with RNA interference (GmCDPK3-RNAi) soybean lines were more wilted than those of GmCDPK3 overexpression (GmCDPK3-OE) soybean lines after drought and salt stresses. The trypan blue staining experiment further confirmed that cell membrane damage of GmCDPK3-RNAi soybean leaves was more severe than in GmCDPK3-OE soybean lines. In addition, proline (Pro) and chlorophyll contents were increased and malondialdehyde (MDA) content was decreased in GmCDPK3-OE soybean lines. On the contrary, GmCDPK3-RNAi soybean lines had decreased Pro and chlorophyll content and increased MDA. The results indicate that GmCDPK3 is essential in resisting drought and salt stresses.


Assuntos
Secas , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glycine max/genética , Proteínas de Plantas/genética , Estresse Salino/genética , Cloreto de Sódio/efeitos adversos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Oryza/efeitos dos fármacos , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Elementos de Resposta , Glycine max/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo
4.
J Zhejiang Univ Sci B ; 7(3): 186-92, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16502504

RESUMO

Screening of microorganisms producing flocculating substances was carried out. A strain secreting a large amount of bioflocculant was isolated from wastewater samples collected from the Little Moon River in Beijing. Based on the morphological properties and 16S rDNA sequence analysis, the isolate (designated W31) was classified as Vagococcus sp. A bioflocculant (named MBFW31) produced by W31 was extracted from the culture broth by ethanol precipitation and purified by gel chromatography. MBFW31 was heat-stable and had strong flocculating activity in a wide range of pH with relatively low dosage requirement. MBFW31 was identified as a polysaccharide with molecular weight over 2 x 10(6). It contained neutral sugar and uronic acid as its major and minor components, respectively. Infrared spectra showed the presence of hydroxyl, carboxyl and methoxyl group in its molecules. The present results suggested that MBFW31 had potential application in wastewater treatment.


Assuntos
Carboidratos/análise , Carboidratos/química , Enterococcus/isolamento & purificação , Enterococcus/metabolismo , Eliminação de Resíduos Líquidos/métodos , Microbiologia da Água , Enterococcus/genética , Floculação , Especificidade da Espécie , Poluentes da Água/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...