Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(7)2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30965611

RESUMO

Driving behavior is the main basis for evaluating the performance of an unmanned vehicle. In simulation tests of unmanned vehicles, in order for simulation results to be approximated to the actual results as much as possible, model of driving behaviors must be able to exhibit actual motion of unmanned vehicles. We propose an automatic approach of simulating dynamic driving behaviors of vehicles in traffic scene represented by image sequences. The spatial topological attributes and appearance attributes of virtual vehicles are computed separately according to the constraint of geometric consistency of sparse 3D space organized by image sequence. To achieve this goal, we need to solve three main problems: Registration of vehicle in a 3D space of road environment, vehicle's image observed from corresponding viewpoint in the road scene, and consistency of the vehicle and the road environment. After the proposed method was embedded in a scene browser, a typical traffic scene including the intersections was chosen for a virtual vehicle to execute the driving tasks of lane change, overtaking, slowing down and stop, right turn, and U-turn. The experimental results show that different driving behaviors of vehicles in typical traffic scene can be exhibited smoothly and realistically. Our method can also be used for generating simulation data of traffic scenes that are difficult to collect.

2.
Sci Robot ; 4(28)2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-33137752

RESUMO

A self-driven closed-loop parallel testing system implements more challenging tests to accelerate evaluation and development of autonomous vehicles.

3.
Sensors (Basel) ; 18(11)2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30400668

RESUMO

Road scene model construction is an important aspect of intelligent transportation system research. This paper proposes an intelligent framework that can automatically construct road scene models from image sequences. The road and foreground regions are detected at superpixel level via a new kind of random walk algorithm. The seeds for different regions are initialized by trapezoids that are propagated from adjacent frames using optical flow information. The superpixel level region detection is implemented by the random walk algorithm, which is then refined by a fast two-cycle level set method. After this, scene stages can be specified according to a graph model of traffic elements. These then form the basis of 3D road scene models. Each technical component of the framework was evaluated and the results confirmed the effectiveness of the proposed approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...