Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(27): e202405379, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639181

RESUMO

Due to the superior catalytic activity and efficient utilization of noble metals, nanocatalysts are extensively used in the modern industrial production of chemicals. The surface structures of these materials are significantly influenced by reactive adsorbates, leading to dynamic behavior under experimental conditions. The dynamic nature poses significant challenges in studying the structure-activity relations of catalysts. Herein, we unveil an anomalous entropic effect on catalysis via surface pre-melting of nanoclusters through machine learning accelerated molecular dynamics and free energy calculation. We find that due to the pre-melting of shell atoms, there exists a non-linear variation in the catalytic activity of the nanoclusters with temperature. Consequently, two notable changes in catalyst activity occur at the respective temperatures of melting for the shell and core atoms. We further study the nanoclusters with surface point defects, i.e. vacancy and ad-atom, and observe significant decrease in the surface melting temperatures of the nanoclusters, enabling the reaction to take place under more favorable and milder conditions. These findings not only provide novel insights into dynamic catalysis of nanoclusters but also offer new understanding of the role of point defects in catalytic processes.

2.
JACS Au ; 1(5): 569-577, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34467320

RESUMO

Unraveling the atomistic structures of electric double layers (EDL) at electrified interfaces is of paramount importance for understanding the mechanisms of electrocatalytic reactions and rationally designing electrode materials with better performance. Despite numerous efforts dedicated in the past, a molecular level understanding of the EDL is still lacking. Combining the state-of-the-art ab initio molecular dynamics (AIMD) and recently developed computational standard hydrogen electrode (cSHE) method, it is possible to realistically simulate the EDL under well-defined electrochemical conditions. In this work, we report extensive AIMD calculation of the electrified Pt(111)-Had/water interfaces at the saturation coverage of adsorbed hydrogen (Had) corresponding to the typical hydrogen evolution reaction conditions. We calculate the electrode potentials of a series of EDL models with various surface charge densities using the cSHE method and further obtain the Helmholtz capacitance that agrees with experiment. Furthermore, the AIMD simulations allow for detailed structural analyses of the electrified interfaces, such as the distribution of adsorbate Had and the structures of interface water and counterions, which can in turn explain the computed dielectric property of interface water. Our calculation provides valuable molecular insight into the electrified interfaces and a solid basis for understanding a variety of electrochemical processes occurring inside the EDL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...