Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 927: 148751, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971547

RESUMO

By analyzing the expression patterns of inner root sheath (IRS) specific genes during different developmental stages of hair follicle (HF) in Tan sheep embryos and at birth, this study aims to reveal the influence of the IRS on crimped wool. Skin tissues from the scapular region of male Tan sheep were collected at 85 days (E85) and 120 days (E120) of fetal development, and at 0 days (D0), 35 days (D35), and 60 days (D60) after birth, with four samples at each stage. Real-time quantitative polymerase chain reaction (RT-qPCR) was employed to determine the relative expression levels of IRS type I keratin genes (KRT25, KRT26, KRT27, KRT28), type II keratin genes (KRT71, KRT72, KRT73, KRT74), and the trichohyalin gene (TCHH) in the skin of Tan sheep at different stages. Results showed that the expression levels of all IRS-specific genes peaked at D0, with the expression of all genes significantly higher than at E85 (P < 0.01), except for KRT73 and TCHH. The expression levels of KRT25, KRT26, and KRT72 were also significantly higher than at E120 (P < 0.01). Furthermore, the expression levels of KRT27, KRT28, KRT71, and KRT74 were significantly higher than both at E120 and D35 (P < 0.01). The expression levels of other genes at different stages showed no significant difference (P > 0.05). Conclusion: The IRS-specific genes exhibit the highest expression levels in Tan sheep at the neonatal stage. The expression levels of KRT71, KRT72, and TCHH, which are consistent with the pattern of wool crimp, may influence the morphology of the IRS and thereby affect the crimp of Tan sheep wool.

2.
Front Cell Dev Biol ; 10: 836913, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433706

RESUMO

Zhongwei goat is a unique Chinese native goat breed for excellent lamb fur. The pattern of flower spikes of the lamb fur was significantly reduced due to the reduction of the bending of the hair strands with growth. In order to explore the molecular mechanism underlying hair bending with growth, we performed the comprehensive analysis of transcriptome and proteome of skins from 45-days, 108-days and 365-days goat based on TMT-based quantitative proteomics and RNA-seq methods. In the three comparison groups, 356, 592 and 282 differentially expressed proteins (DEPs) were screened, respectively. KEGG pathway analysis indicated that DEPs were significantly enriched in a set of signaling pathways related to wool growth and bending, such as ECM-receptor interaction, PI3K-Akt signaling pathway, PPAR signaling pathway, protein digestion and absorption, and metabolic pathways. In addition, 20 DEPs abundance of goat skin at three development stages were examined by PRM method, which validated the reliability of proteomic data. Among them, KRT and collagen alpha family may play an important role in the development of goat hair follicle and wool bending. COL6A1, COL6A2, CRNN, TNC and LOC102178129 were identified as candidate genes based on combined analysis of transcriptome and proteome data and PRM quantification. Our results identify the differential expressed proteins as well as pathways related to the wool bending of Zhongwei goats and provide a theoretical basis for further revealing the molecular mechanism underlying wool bending of goats.

3.
Animals (Basel) ; 11(11)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34828057

RESUMO

Chinese Zhongwei goat is a rare and precious fur breed as its lamb fur is a well-known fur product. Wool bending of lamb fur of the Zhongwei goat is its most striking feature. However, the curvature of the wool decreases gradually with growth, which significantly affects its quality and economic value. The mechanism regulating the phenotypic changes of hair bending is still unclear. In the present study, the skin tissues of Zhongwei goats at 45 days (curving wool) and 108 days (slight-curving wool) after birth were taken as the research objects, and the expression profiling of long non-coding RNAs (lncRNAs) and mRNAs were analyzed based on the Ribo Zero RNA sequencing (RNA-seq) method. In total, 46,013 mRNAs and 13,549 lncRNAs were identified, of which 352 were differentially expressed mRNAs and 60 were. lncRNAs. Functional enrichment analysis of the target genes of lncRNAs were mainly enriched in PI3K-Akt, Arachidonic acid metabolic, cAMP, Wnt, and other signaling pathways. The qRT-PCR results of eight selected lncRNAs and target genes were consistent with the sequencing result, which indicated our data were reliable. Through the analysis of the weighted gene co-expression network, 13 co-expression modules were identified. The turquoise module contained a large number of differential expressed lncRNAs, which were mainly enriched in the PI3K-Akt signaling pathway and cAMP signaling pathway. The predicted LOC102172600 and LOC102191729 might affect the development of hair follicles and the curvature of wool by regulating the target genes. Our study provides novel insights into the potential roles of lncRNAs in the regulation of wool bending. In addition, the study offers a theoretical basis for further study of goat wool growth, so as to be a guidance and reference for breeding and improvement in the future.

4.
Int J Mol Sci ; 21(14)2020 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-32708395

RESUMO

The Zhongwei goat is an important and unique goat breed indigenous to China. It has a natural hair curling phenotype at birth, but the degree of curling gradually decreases with growth. The molecular mechanism underlying the dynamic changes in the wool curvature in Zhongwei goats is poorly understood. MicroRNAs (miRNAs) play important roles in many biological processes, including hair growth and development. In this study, we selected skins from Zhongwei goats at different ages (45 and 108 days) that exhibited different levels of hair curvature and performed miRNA sequencing to explore the molecular mechanism of hair bending. In total, 28 significantly differentially expressed miRNAs (DE miRNAs) were identified in the three groups of samples between the two developmental stages. An analysis of the target genes of the above-mentioned DE miRNAs by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that the DE miRNAs were involved in signal pathways which were previously associated with hair bending and hair follicle development, such as the TGF-ß/SMAD, PI3K-Akt, JAK-STAT, and MAPK pathways. A comprehensive analysis of the correlations between the miRNA-seq results and issued transcriptional findings indicated that SMAD1 was a target gene of miR-26a and SMAD5 was a target gene of miR-130a. Furthermore, goat dermal papilla cells were successfully isolated and purified to determine the role of miRNAs in follicle development in vitro. The study results demonstrated that miR-130a and miR-26a had significant effects on the proliferation of dermal papilla cells. In addition, the detection results of mRNA and protein levels indicate that the overexpression of miR-26a can promote the expression of related genes in the TGF-ß/SMAD pathway, while miR-130a has the opposite substitution effect. The dual luciferase report test showed that miR-26a targeted the SMAD1 gene and reduced the expression of the SMAD1 protein in hair papillary cells. Our results identified DE microRNAs which perhaps change at the time of hair straightening in Zhongwei goats and explore the role of miR-26a and miR-130a in dermal papilla cells proliferation. The present study provided a theoretical basis to explore the mechanisms underlying the Zhongwei hair growth and curly phenotype.


Assuntos
Cabras/metabolismo , Folículo Piloso/metabolismo , Cabelo/crescimento & desenvolvimento , Cabelo/metabolismo , MicroRNAs/metabolismo , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento/genética , Ontologia Genética , Cabras/genética , Cabras/crescimento & desenvolvimento , Folículo Piloso/crescimento & desenvolvimento , Janus Quinases/genética , Janus Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/genética , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Pele/citologia , Pele/metabolismo , Fator de Crescimento Transformador beta/genética
5.
Front Genet ; 10: 1263, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31969898

RESUMO

The Zhongwei goat is kept primarily for its beautiful white, curly pelt that appears when the kid is approximately 1 month old; however, this representative phenotype often changes to a less curly phenotype during postnatal development in a process that may be mediated by multiple molecular signals. DNA methylation plays important roles in mammalian cellular processes and is essential for the initiation of hair follicle (HF) development. Here, we sought to investigate the effects of genome-wide DNA methylation by combining expression profiles of the underlying curly fleece dynamics. Genome-wide DNA methylation maps and transcriptomes of skin tissues collected from 45- to 108-day-old goats were used for whole-genome bisulfite sequencing (WGBS) and RNA sequencing, respectively. Between the two developmental stages, 1,250 of 3,379 differentially methylated regions (DMRs) were annotated in differentially methylated genes (DMGs), and these regions were mainly related to intercellular communication and the cytoskeleton. Integrated analysis of the methylome and transcriptome data led to the identification of 14 overlapping genes that encode crucial factors for wool fiber development through epigenetic mechanisms. Furthermore, a functional study using human hair inner root sheath cells (HHIRSCs) revealed that, one of the overlapping genes, platelet-derived growth factor C (PDGFC) had a significant effect on the messenger RNA expression of several key HF-related genes that promote cell migration and proliferation. Our study presents an unprecedented analysis that was used to explore the enigma of fleece morphological changes by combining methylome maps and transcriptional expression, and these data revealed stage-specific epigenetic changes that potentially affect fiber development. Furthermore, our functional study highlights a possible role for the overlapping gene PDGFC in HF cell growth, which may be a predictable biomarker for fur goat selection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...