Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Hypertens Res ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877311

RESUMO

Salt-sensitivity hypertension (SSH) is an independent predictor of cardiovascular event-related death. Despite the extensiveness of research on hypertension, which covers areas such as the sympathetic nervous system, the renin-angiotensin system, the vascular system, and the immune system, its pathogenesis remains elusive, with sub-optimal blood pressure control in patients. The gut microbiota is an important component of nutritional support and constitutes a barrier in the host. Long-term high salt intake can lead to gut microbiota dysbiosis and cause significant changes in the expression of gut microbiota-related metabolites. Of these metabolites, short chain fatty acids (SCFAs), trimethylamine oxide, amino acids, bile acids, and lipopolysaccharide are essential mediators of microbe-host crosstalk. These metabolites may contribute to the incidence and development of SSH via inflammatory, immune, vascular, and nervous pathways, among others. In addition, recent studies, including those on the histone deacetylase inhibitory mechanism of SCFAs and the blood pressure-decreasing effects of H2S via vascular activation, suggest that several proteins and factors in the classical pathway elicit their effects through multiple non-classical pathways. This review summarizes changes in the gut microbiota and its related metabolites in high-salt environments, as well as corresponding treatment methods for SSH, such as diet management, probiotic and prebiotic use, antibiotic use, and fecal transplantation, to provide new insights and perspectives for understanding SSH pathogenesis and the development of strategies for its treatment.

2.
FASEB J ; 38(10): e23662, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38752545

RESUMO

The ubiquitination function in diabetic nephropathy (DN) has attracted much attention, but there is a lack of information on its ubiquitylome profile. To examine the differences in protein content and ubiquitination in the kidney between db/db mice and db/m mice, we deployed liquid chromatography-mass spectrometry (LC-MS/MS) to conduct analysis. We determined 145 sites in 86 upregulated modified proteins and 66 sites in 49 downregulated modified proteins at the ubiquitinated level. Moreover, 347 sites among the 319 modified proteins were present only in the db/db mouse kidneys, while 213 sites among the 199 modified proteins were present only in the db/m mouse kidneys. The subcellular localization study indicated that the cytoplasm had the highest proportion of ubiquitinated proteins (31.87%), followed by the nucleus (30.24%) and the plasma membrane (20.33%). The enrichment analysis revealed that the ubiquitinated proteins are mostly linked to tight junctions, oxidative phosphorylation, and thermogenesis. Podocin, as a typical protein of slit diaphragm, whose loss is a crucial cause of proteinuria in DN. Consistent with the results of ubiquitination omics, the K261R mutant of podocin induced the weakest ubiquitination compared with the K301R and K370R mutants. As an E3 ligase, c-Cbl binds to podocin, and the regulation of c-Cbl can impact the ubiquitination of podocin. In conclusion, in DN, podocin ubiquitination contributes to podocyte injury, and K261R is the most significant site. c-Cbl participates in podocin ubiquitination and may be a direct target for preserving the integrity of the slit diaphragm structure, hence reducing proteinuria in DN.


Assuntos
Nefropatias Diabéticas , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Podócitos , Proteínas Proto-Oncogênicas c-cbl , Ubiquitinação , Animais , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Podócitos/metabolismo , Podócitos/patologia , Camundongos , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Proto-Oncogênicas c-cbl/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Masculino , Camundongos Endogâmicos C57BL
3.
Cell Death Discov ; 10(1): 234, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750055

RESUMO

Ferroptosis is a novel form of lipid peroxidation-driven, iron-dependent programmed cell death. Various metabolic pathways, including those involved in lipid and iron metabolism, contribute to ferroptosis regulation. The gut microbiota not only supplies nutrients and energy to the host, but also plays a crucial role in immune modulation and metabolic balance. In this review, we explore the metabolic pathways associated with ferroptosis and the impact of the gut microbiota on host metabolism. We subsequently summarize recent studies on the influence and regulation of ferroptosis by the gut microbiota and discuss potential mechanisms through which the gut microbiota affects ferroptosis. Additionally, we conduct a bibliometric analysis of the relationship between the gut microbiota and ferroptosis in the context of chronic kidney disease. This analysis can provide new insights into the current research status and future of ferroptosis and the gut microbiota.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38779755

RESUMO

Diabetes is closely associated with K+ disturbances during disease progression and treatment. However, it remains unclear whether K+ imbalance occurs in diabetes with normal kidney function. In this study, we examined the effects of dietary K+ intake on systemic K+ balance and renal K+ handling in streptozotocin (STZ)-induced diabetic mice. The control and STZ mice were fed low or high K+ diet for 7 days to investigate the role of dietary K+ intake in renal K+ excretion and K+ homeostasis, and to explore the underlying mechanism by evaluating K+ secretion-related transport proteins in distal nephrons. K+-deficient diet caused excessive urinary K+ loss, decreased daily K+ balance, and led to severe hypokalemia in STZ mice compared to control mice. In contrast, STZ mice showed an increased daily K+ balance and elevated plasma K+ level under K+-loading conditions. Dysregulation of the NaCl cotransporter (NCC), epithelia Na+ channel (ENaC), and renal outer medullary K+ channel (ROMK) was observed in diabetic mice fed either low or high K+ diet. Moreover, amiloride treatment reduced urinary K+ excretion and corrected hypokalemia in K+-restricted STZ mice. On the other hand, inhibition of SGLT2 by dapagliflozin promoted urinary K+ excretion and normalized plasma K+ level in K+-supplemented STZ mice, at least partly by increasing ENaC activity. We conclude that STZ mice exhibited abnormal K+ balance and impaired renal K+ handling under either low or high K+ diet, which could be primarily attributed to the dysfunction of ENaC-dependent renal K+ excretion pathway, despite the possible role of NCC.

5.
J Hypertens ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38780161

RESUMO

OBJECTIVES: Potassium supplementation reduces blood pressure and the occurrence of cardiovascular diseases, with K+-induced natriuresis playing a potential key role in this process. However, whether these beneficial effects occur in diabetes remains unknown. METHODS: In this study, we examined the impact of high-K+ intake on renal Na+/K+ transport by determining the expression of major apical Na+ transporters, diuretics responses (as a proxy for specific Na+ transporter function), urinary Na+/K+ excretion, and plasma Na+/K+ concentrations in db/db mice, a model of type 2 diabetes mellitus. RESULTS: Although db/m mice exhibited increased fractional excretion of sodium (FENa) and fractional excretion of potassium (FEK) under high-K+ intake, these responses were largely blunted in db/db mice, suggesting impaired K+-induced natriuresis and kaliuresis in diabetes. Consequently, high-K+ intake increased plasma K+ levels in db/db mice, which could be attributed to the abnormal activity of sodium-hydrogen exchanger 3 (NHE3), sodium-chloride cotransporter (NCC), and epithelial Na+ channel (ENaC), as high-K+ intake could not effectively decrease NHE3 and NCC and increase ENaC expression and activity in the diabetic group. Inhibition of NCC by hydrochlorothiazide could correct the hyperkalemia in db/db mice fed a high-K+ diet, indicating a key role for NCC in K+-loaded diabetic mice. Treatment with metformin enhanced urinary Na+/K+ excretion and normalized plasma K+ levels in db/db mice with a high-K+ diet, at least partially, by suppressing NCC activity. CONCLUSION: Collectively, the impaired K+-induced natriuresis in diabetic mice under high-K+ intake may be primarily attributed to impaired NCC-mediated renal K+ excretion, despite the role of NHE3.

6.
Diabetologia ; 67(7): 1429-1443, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38676722

RESUMO

AIMS: Lactate accumulation is reported to be a biomarker for diabetic nephropathy progression. Lactate drives lysine lactylation, a newly discovered post-translational modification that is involved in the pathogenesis of cancers and metabolic and inflammatory disease. Here, we aimed to determine whether lysine lactylation is involved in the pathogenesis of diabetic nephropathy. METHODS: Renal biopsy samples from individuals with diabetic nephropathy (n=22) and control samples from individuals without diabetes and kidney disease (n=9) were obtained from the First Affiliated Hospital of Zhengzhou University for immunohistochemical staining. In addition, we carried out global lactylome profiling of kidney tissues from db/m and db/db mice using LC-MS/MS. Furthermore, we assessed the role of lysine lactylation and acyl-CoA synthetase family member 2 (ACSF2) in mitochondrial function in human proximal tubular epithelial cells (HK-2). RESULTS: The expression level of lysine lactylation was significantly increased in the kidneys of individuals with diabetes as well as in kidneys from db/db mice. Integrative lactylome analysis of the kidneys of db/db and db/m mice identified 165 upregulated proteins and 17 downregulated proteins, with an increase in 356 lysine lactylation sites and a decrease in 22 lysine lactylation sites decreased. Subcellular localisation analysis revealed that most lactylated proteins were found in the mitochondria (115 proteins, 269 sites). We further found that lactylation of the K182 site in ACSF2 contributes to mitochondrial dysfunction. Finally, the expression of ACSF2 was notably increased in the kidneys of db/db mice and individuals with diabetic nephropathy. CONCLUSIONS: Our study strongly suggests that lysine lactylation and ACSF2 are mediators of mitochondrial dysfunction and may contribute to the progression of diabetic nephropathy. DATA AVAILABILITY: The LC-MS/MS proteomics data have been deposited in the ProteomeXchange Consortium database ( https://proteomecentral.proteomexchange.org ) via the iProX partner repository with the dataset identifier PXD050070.


Assuntos
Nefropatias Diabéticas , Túbulos Renais , Lisina , Animais , Camundongos , Humanos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Lisina/metabolismo , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Masculino , Coenzima A Ligases/metabolismo , Processamento de Proteína Pós-Traducional , Lipoilação , Camundongos Endogâmicos C57BL , Feminino
7.
Ren Fail ; 46(1): 2337288, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38628140

RESUMO

The mechanisms underlying the complex correlation between immunoglobulin A nephropathy (IgAN) and inflammatory bowel disease (IBD) remain unclear. This study aimed to identify the optimal cross-talk genes, potential pathways, and mutual immune-infiltrating microenvironments between IBD and IgAN to elucidate the linkage between patients with IBD and IgAN. The IgAN and IBD datasets were obtained from the Gene Expression Omnibus (GEO). Three algorithms, CIBERSORTx, ssGSEA, and xCell, were used to evaluate the similarities in the infiltrating microenvironment between the two diseases. Weighted gene co-expression network analysis (WGCNA) was implemented in the IBD dataset to identify the major immune infiltration modules, and the Boruta algorithm, RFE algorithm, and LASSO regression were applied to filter the cross-talk genes. Next, multiple machine learning models were applied to confirm the optimal cross-talk genes. Finally, the relevant findings were validated using histology and immunohistochemistry analysis of IBD mice. Immune infiltration analysis showed no significant differences between IBD and IgAN samples in most immune cells. The three algorithms identified 10 diagnostic genes, MAPK3, NFKB1, FDX1, EPHX2, SYNPO, KDF1, METTL7A, RIDA, HSDL2, and RIPK2; FDX1 and NFKB1 were enhanced in the kidney of IBD mice. Kyoto Encyclopedia of Genes and Genomes analysis showed 15 mutual pathways between the two diseases, with lipid metabolism playing a vital role in the cross-talk. Our findings offer insights into the shared immune mechanisms of IgAN and IBD. These common pathways, diagnostic cross-talk genes, and cell-mediated abnormal immunity may inform further experimental studies.


Assuntos
Glomerulonefrite por IGA , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Glomerulonefrite por IGA/genética , Rim , Algoritmos , Perfilação da Expressão Gênica , Doenças Inflamatórias Intestinais/genética , Hidroxiesteroide Desidrogenases , Proteínas
8.
Genes Dis ; 11(4): 101119, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38523672

RESUMO

Diabetic kidney disease is a leading cause of end-stage renal disease, making it a global public health concern. The molecular mechanisms underlying diabetic kidney disease have not been elucidated due to its complex pathogenesis. Thus, exploring these mechanisms from new perspectives is the current focus of research concerning diabetic kidney disease. Ion channels are important proteins that maintain the physiological functions of cells and organs. Among ion channels, potassium channels stand out, because they are the most common and important channels on eukaryotic cell surfaces and function as the basis for cell excitability. Certain potassium channel abnormalities have been found to be closely related to diabetic kidney disease progression and genetic susceptibility, such as KATP, KCa, Kir, and KV. In this review, we summarized the roles of different types of potassium channels in the occurrence and development of diabetic kidney disease to discuss whether the development of DKD is due to potassium channel dysfunction and present new ideas for the treatment of DKD.

9.
Cell Commun Signal ; 22(1): 113, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347570

RESUMO

Chronic kidney disease (CKD) has historically been a significant global health concern, profoundly impacting both life and well-being. In the process of CKD, with the gradual loss of renal function, the incidence of various life-threatening complications, such as cardiovascular diseases, cerebrovascular accident, infection and stroke, is also increasing rapidly. Unfortunately, existing treatments exhibit limited ability to halt the progression of kidney injury in CKD, emphasizing the urgent need to delve into the precise molecular mechanisms governing the occurrence and development of CKD while identifying novel therapeutic targets. Renal fibrosis, a typical pathological feature of CKD, plays a pivotal role in disrupting normal renal structures and the loss of renal function. Ferroptosis is a recently discovered iron-dependent form of cell death characterized by lipid peroxide accumulation. Ferroptosis has emerged as a potential key player in various diseases and the initiation of organ fibrosis. Substantial evidence suggests that ferroptosis may significantly contribute to the intricate interplay between CKD and its progression. This review comprehensively outlines the intricate relationship between CKD and ferroptosis in terms of iron metabolism and lipid peroxidation, and discusses the current landscape of pharmacological research on ferroptosis, shedding light on promising avenues for intervention. It further illustrates recent breakthroughs in ferroptosis-related regulatory mechanisms implicated in the progression of CKD, thereby providing new insights for CKD treatment. Video Abstract.


Assuntos
Doenças Cardiovasculares , Ferroptose , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/complicações , Morte Celular , Ferro
10.
Diabetol Metab Syndr ; 16(1): 45, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360685

RESUMO

AIM: Cannabinoid receptors are components of the endocannabinoid system that affect various physiological functions. We aim to investigate the effect of cannabinoid receptor modulation on kidney disease. METHODS: PubMed, Web of Science databases, and EMBASE were searched. Articles selection, data extraction and quality assessment were independently performed by two investigators. The SYRCLE's RoB tool was used to assess the risk of study bias, and pooled SMD using a random-effect model and 95% CIs were calculated. Subgroup analyses were conducted in preselected subgroups, and publication bias was evaluated. We compared the effects of CB1 and CB2 antagonists and/or knockout and agonists and/or genetic regulation on renal function, blood glucose levels, body weight, and pathological damage-related indicators in different models of chronic and acute kidney injury. RESULTS: The blockade or knockout of CB1 could significantly reduce blood urea nitrogen [SMD,- 1.67 (95% CI - 2.27 to - 1.07)], serum creatinine [SMD, - 1.88 (95% CI - 2.91 to - 0.85)], and albuminuria [SMD, - 1.60 (95% CI - 2.16 to - 1.04)] in renal dysfunction animals compared with the control group. The activation of CB2 group could significantly reduce serum creatinine [SMD, - 0.97 (95% CI - 1.83 to - 0.11)] and albuminuria [SMD, - 2.43 (95% CI - 4.63 to - 0.23)] in renal dysfunction animals compared with the control group. CONCLUSIONS: The results suggest that targeting cannabinoid receptors, particularly CB1 antagonists and CB2 agonists, can improve kidney function and reduce inflammatory responses, exerting a renal protective effect and maintaining therapeutic potential in various types of kidney disease.

11.
FASEB J ; 38(3): e23458, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38315453

RESUMO

Diabetic kidney disease (DKD), a major microvascular complication of diabetes, is characterized by its complex pathogenesis, high risk of chronic renal failure, and lack of effective diagnosis and treatment methods. GSK3ß (glycogen synthase kinase 3ß), a highly conserved threonine/serine kinase, was found to activate glycogen synthase. As a key molecule of the glucose metabolism pathway, GSK3ß participates in a variety of cellular activities and plays a pivotal role in multiple diseases. However, these effects are not only mediated by affecting glucose metabolism. This review elaborates on the role of GSK3ß in DKD and its damage mechanism in different intrinsic renal cells. GSK3ß is also a biomarker indicating the progression of DKD. Finally, the protective effects of GSK3ß inhibitors on DKD are also discussed.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Glicogênio Sintase Quinase 3 beta , Humanos , Nefropatias Diabéticas/tratamento farmacológico , Glucose/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Rim/metabolismo
12.
Front Pharmacol ; 15: 1349069, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384297

RESUMO

The global prevalence of diabetes mellitus (DM) has led to widespread multi-system damage, especially in cardiovascular and renal functions, heightening morbidity and mortality. Emerging antidiabetic drugs sodium-glucose cotransporter 2 inhibitors (SGLT2i), glucagon-like peptide-1 receptor agonists (GLP-1RAs), and dipeptidyl peptidase-4 inhibitors (DPP-4i) have demonstrated efficacy in preserving cardiac and renal function, both in type 2 diabetic and non-diabetic individuals. To understand the exact impact of these drugs on cardiorenal protection and underlying mechanisms, we conducted a comprehensive review of recent large-scale clinical trials and basic research focusing on SGLT2i, GLP-1RAs, and DPP-4i. Accumulating evidence highlights the diverse mechanisms including glucose-dependent and independent pathways, and revealing their potential cardiorenal protection in diabetic and non-diabetic cardiorenal disease. This review provides critical insights into the cardiorenal protective effects of SGLT2i, GLP-1RAs, and DPP-4i and underscores the importance of these medications in mitigating the progression of cardiovascular and renal complications, and their broader clinical implications beyond glycemic management.

13.
Adv Sci (Weinh) ; 11(10): e2305563, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145959

RESUMO

Diabetic nephropathy (DN) is a serious microvascular complication of diabetes. Ferroptosis, a new form of cell death, plays a crucial role in the pathogenesis of DN. Renal tubular injury triggered by ferroptosis might be essential in this process. Numerous studies demonstrate that the vitamin D receptor (VDR) exerts beneficial effects by suppressing ferroptosis. However, the underlying mechanism has not been fully elucidated. Thus, they verified the nephroprotective effect of VDR activation and explored the mechanism by which VDR activation suppressed ferroptosis in db/db mice and high glucose-cultured proximal tubular epithelial cells (PTECs). Paricalcitol (PAR) is a VDR agonist that can mitigate kidney injury and prevent renal dysfunction. PAR treatment could inhibit ferroptosis of PTECs through decreasing iron content, increasing glutathione (GSH) levels, reducing malondialdehyde (MDA) generation, decreasing the expression of positive ferroptosis mediator transferrin receptor 1 (TFR-1), and enhancing the expression of negative ferroptosis mediators including ferritin heavy chain (FTH-1), glutathione peroxidase 4 (GPX4), and cystine/glutamate antiporter solute carrier family 7 member 11 (SLC7A11). Mechanistically, VDR activation upregulated the NFE2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) signaling pathway to suppress ferroptosis in PTECs. These findings suggested that VDR activation inhibited ferroptosis of PTECs in DN via modulating the Nrf2/HO-1 signaling pathway.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Ferroptose , Animais , Camundongos , Células Epiteliais , Glutationa , Heme Oxigenase-1 , Fator 2 Relacionado a NF-E2 , Receptores de Calcitriol , Transdução de Sinais
14.
J Transl Int Med ; 11(4): 449-458, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38130638

RESUMO

Background: Diabetic retinopathy (DR) is a risk factor for diabetic kidney disease (DKD). Whether the duration, especially the short-term duration, of DR is associated with the development and progression of DKD remains unclear. Materials and Methods: A retrospective study and two-sample Mendelian randomization (MR) analysis were conducted. Kidney disease was defined by the urinary albumin-to-creatinine ratio (ACR) and the estimated glomerular filtration rate (eGFR). DR was diagnosed by an expert ophthalmologist by using a digital fundus camera. Binary and ordinal logistic regression analyses were performed. A restricted cubic spline was utilized to detect nonlinear associations. Summary statistics for DR- and DKD-associated single-nuclear polymorphisms (SNPs) were extracted from the FinnGen and the UK Biobank consortia. Results: A total of 2674 patients with type 2 diabetes mellitus (T2DM) and type 2 diabetic kidney disease (T2DKD) were included. The prevalence and mean duration of DR increased with elevation of ACR and decline in eGFR. Renal function was significantly reduced in patients with DR in the fifth year of life. Binary and ordinal logistic regression showed that each 1-year increase in DR duration was associated with a 19% risk increase in the development of DKD, 16% in the elevation of ACR, and 21% in the decline of renal function. MR estimates indicated that DR was causally associated with DKD development, with an odds ratio of 2.89. Conclusions: DR and the duration of DR were independent risk factors for the development and progression of DKD. The short-term duration of DR may be associated with DKD development. DR had a statistically significant effect on DKD.

15.
Redox Biol ; 68: 102946, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924663

RESUMO

Diabetic tubulopathy (DT) is a recently recognized key pathology of diabetic kidney disease (DKD). The mitochondria-centric view of DT is emerging as a vital pathological factor in different types of metabolic diseases, such as DKD. Finerenone (FIN), a novel non-steroidal mineralocorticoid receptor antagonist, attenuates kidney inflammation and fibrosis in DKD, but the precise pathomechanisms remain unclear. The role of mineralocorticoid receptor (MR) in perturbing mitochondrial function via the PI3K/Akt/eNOS signaling pathway, including mitochondrial dynamics and mitophagy, was investigated under a diabetic state and high glucose (HG) ambiance. To elucidate how the activation of MR provokes mitochondrial dysfunction in DT, human kidney proximal tubular epithelial (HK-2) cells were exposed to HG, and then mitochondrial dynamics, mitophagy, mitochondrial ROS (mitoROS), signaling molecules PI3K, Akt, Akt phosphorylation and eNOS were probed. The above molecules or proteins were also explored in the kidneys of diabetic and FIN-treated mice. FIN treatment reduced oxidative stress, mitochondrial fragmentation, and apoptosis while restoring the mitophagy via PI3K/Akt/eNOS signaling pathway in HK-2 cells exposed to HG ambiance and tubular cells of DM mice. These findings linked MR activation to mitochondrial dysfunction via PI3K/Akt/eNOS signaling pathway in DT and highlight a pivotal but previously undiscovered role of FIN in alleviating renal tubule injury for the treatment of DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antagonistas de Receptores de Mineralocorticoides/metabolismo , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Nefropatias Diabéticas/metabolismo , Mitocôndrias/metabolismo , Diabetes Mellitus/metabolismo
16.
Int J Biol Sci ; 19(14): 4427-4441, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781026

RESUMO

Diabetic kidney disease (DKD) is a global health issue that presents a complex pathogenesis and limited treatment options. To provide guidance for precise therapies, it is crucial to accurately identify the pathogenesis of DKD. Several studies have recognized that mitochondrial and endoplasmic reticulum (ER) dysfunction are key drivers of the pathogenesis of DKD. The mitochondria-associated ER membrane (MAM) is a dynamic membrane contact site (MSC) that connects the ER and mitochondria and is essential in maintaining the normal function of the two organelles. MAM is involved in various cellular processes, including lipid synthesis and transport, calcium homeostasis, mitochondrial fusion and fission, and ER stress. Meanwhile, recent studies confirm that MAM plays a significant role in the pathogenesis of DKD by regulating glucose metabolism, lipid metabolism, inflammation, ER stress, mitochondrial fission and fusion, and autophagy. Herein, this review aims to provide a comprehensive summary of the physiological function of MAMs and their impact on the progression of DKD. Subsequently, we discuss the trend of pharmaceutical studies that target MAM resident proteins for treating DKD. Furthermore, we also explore the future development prospects of MAM in DKD research, thereby providing a new perspective for basic studies and clinical treatment of DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/metabolismo , Membranas Mitocondriais/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Inflamação/metabolismo , Estresse do Retículo Endoplasmático , Diabetes Mellitus/metabolismo
17.
Aging (Albany NY) ; 15(19): 10681-10704, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37827693

RESUMO

Diabetic kidney disease (DKD) is a renal microvascular disease caused by hyperglycemia that involves metabolic remodeling, oxidative stress, inflammation, and other factors. The mechanism is complex and not fully unraveled. We performed an integrated single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) and single-cell RNA-sequencing (scRNA-seq) analyses of kidneys from db/db and db/m mice to identify differential open chromatin regions and gene expression, particularly in genes related to proximal tubular reabsorption and secretion. We identified 9,776 differentially expressed genes (DEGs) and 884 cell type-specific transcription factors (TFs) across 15 cell types. Glucose and lipid transporters, and TFs related to the circadian rhythm in the proximal tubules had significantly higher expression in db/db mice than in db/m mice (P<0.01). Crosstalk between podocytes and tubular cells in the proximal tubules was enhanced, and renal inflammation, oxidative stress, and fibrosis pathways were activated in db/db mice. Western blotting and immunohistochemical staining results showed that Wfdc2 expression in the urine and kidneys of DKD patients was higher than that in non-diabetic kidney disease (NDKD) controls. The revealed landscape of chromatin accessibility and transcriptional profiles in db/db mice provide insights into the pathological mechanism of DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Humanos , Camundongos , Animais , Nefropatias Diabéticas/metabolismo , Cromatina/genética , Cromatina/metabolismo , RNA/metabolismo , Rim/patologia , Biomarcadores/metabolismo , Inflamação/metabolismo , Diabetes Mellitus/metabolismo , Proteína 2 do Domínio Central WAP de Quatro Dissulfetos/genética , Proteína 2 do Domínio Central WAP de Quatro Dissulfetos/metabolismo
18.
Amino Acids ; 55(11): 1563-1572, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37736814

RESUMO

Diabetic kidney disease (DKD), a highly prevalent complication of diabetes mellitus, is a major cause of mortality in patients. However, identifying circulatory markers to diagnose DKD requires a thorough understanding of the metabolic mechanisms of DKD. In this study, we performed ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) to reveal altered metabolic profiles of amino acids (AAs) in patients with DKD. We found decreased plasma levels of histidine and valine, increased urine levels of proline, decreased urine levels of histidine and valine, and increased saliva levels of arginine in patients with DKD compared with the levels in patients with type 2 diabetes mellitus (T2DM) and in healthy controls. Our analyses of the key metabolites and metabolic enzymes involved in histidine and valine metabolism indicated that the AAs level alterations may be due to enhanced carnosine hydrolysis, decreased degradation of homocarnosine and anserine, enhanced histidine methylation, and systemic enhancement of valine metabolism in patients with DKD. Notably, we generated a distinct diagnostic model with an AUC of 0.957 and an accuracy up to 92.2% on the basis of the AA profiles in plasma, urine and saliva differing in patients with DKD using logistic regression and receiver operating characteristic analyses. In conclusion, our results suggest that altered AA metabolic profiles are associated with the progression of DKD. Our DKD diagnostic model on the basis of AA levels in plasma, urine, and saliva may provide a theoretical basis for innovative strategies to diagnose DKD that may replace cumbersome kidney biopsies.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/metabolismo , Aminoácidos , Diabetes Mellitus Tipo 2/metabolismo , Histidina , Cromatografia Líquida , Espectrometria de Massas em Tandem , Aminas , Valina
19.
Comput Biol Med ; 166: 107480, 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37738894

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is a common systemic microvascular complication of diabetes and a leading cause of chronic kidney disease worldwide. Urinary extracellular vesicles (uEVs), which are natural nanoscale vesicles that protect RNA from degradation, have the potential to serve as an invasive diagnostic biomarker for DN. METHODS: We enrolled 24 participants, including twelve with renal biopsy-proven T2DN and twelve with T2DM, and isolated uEVs using ultracentrifugation. We performed microarrays for mRNAs, lncRNAs, and circRNAs in parallel, and Next-Generation Sequencing for miRNAs. Differentially expressed RNAs (DE-RNAs) were subjected to CIBERSORTx, ssGSEA analysis, GO enrichment, PPI network analysis, and construction of the lncRNA/circRNA-miRNA-mRNA regulatory network. Candidate genes and potential biomarker RNAs were validated using databases and machine learning models. RESULTS: A total of 1684 mRNAs, 126 lncRNAs, 123 circRNAs and 66 miRNAs were found in uEVs in T2DN samples compared with T2DM. CIBERSORTx revealed the involvement of uEVs in immune activity and ssGSEA explored possible cell or tissue sources of uEVs. A ceRNA co-expression and regulation relationship network was constructed. Candidate genes MYO1C and SP100 mRNA were confirmed to be expressed in the kidney using Nephroseq database, scRNA-seq dataset, and Human Protein Atlas database. We further selected 2 circRNAs, 2 miRNAs, and 2 lncRNAs from WGCNAs and ceRNAs and demonstrated their efficacy as potential diagnostic biomarkers for T2DN using machine learning algorithms. CONCLUSIONS: This study reported, for the first time, the whole-transcriptome genetic resources found in urine extracellular vesicles of T2DN patients. The results provide additional support for the possible interactions, and regulators between RNAs from uEVs themselves and as potential biomarkers in DN.

20.
Int J Biol Sci ; 19(12): 3726-3743, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564215

RESUMO

Ferroptosis is an iron-dependent programmed cell death pattern that is characterized by iron overload, reactive oxygen species (ROS) accumulation and lipid peroxidation. Growing viewpoints support that the imbalance of iron homeostasis and the disturbance of lipid metabolism contribute to tissue or organ injury in various kidney diseases by triggering ferroptosis. At present, the key regulators and complicated network mechanisms associated with ferroptosis have been deeply studied; however, its role in the initiation and progression of kidney diseases has not been fully revealed. Herein, we aim to discuss the features, key regulators and complicated network mechanisms associated with ferroptosis, explore the emerging roles of organelles in ferroptosis, gather its pharmacological progress, and systematically summarize the most recent discoveries about the crosstalk between ferroptosis and kidney diseases, including renal cell carcinoma (RCC), acute kidney injury (AKI), diabetic kidney disease (DKD), autosomal dominant polycystic kidney disease (ADPKD), renal fibrosis, lupus nephritis (LN) and IgA nephropathy. We further conclude the potential therapeutic strategies by targeting ferroptosis for the prevention and treatment of kidney diseases and hope that this work will provide insight for the further study of ferroptosis in the pathogenesis of kidney-related diseases.


Assuntos
Injúria Renal Aguda , Nefropatias Diabéticas , Ferroptose , Neoplasias Renais , Humanos , Ferro , Peroxidação de Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...