Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(28): 18344-18354, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38954797

RESUMO

Graphite exhibits crystal anisotropy, which impedes the mass transfer of ion intercalation and extraction processes in Li-ion batteries. Herein, a dual-shock chemical strategy has been developed to synthesize the carbon anode. This approach comprised two key phases: (1) a thermal shock utilizing ultrahigh temperature (3228 K) can thermodynamically facilitate graphitization; (2) a mechanical shock (21.64 MPa) disrupting the π-π interactions in the aromatic chains of carbon can result in hybrid-structured carbon composed of crystalline and amorphous carbon. The optimized carbon (DSC-200-0.3) demonstrates a capacity of 208.61 mAh/g at a 10C rate, with a significant enhancement comparing with 15 mAh/g of the original graphite. Impressively, it maintains 81.06% capacity even after 3000 charge-discharge cycles. Dynamic process analysis reveals that this superior rate performance is attributed to a larger interlayer spacing facilitating ion transport comparing with the original graphite, disordered amorphous carbon for additional lithium storage sites, and crystallized carbon for enhanced charge transfer. The dual-shock chemical approach offers a cost-effective and efficient method to rapidly produce hybrid-structured carbon anodes, enabling 10C fast charging capabilities in lithium-ion batteries.

2.
Nanomicro Lett ; 16(1): 210, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842604

RESUMO

Nickel-rich layered oxide LiNixCoyMnzO2 (NCM, x + y + z = 1) is the most promising cathode material for high-energy lithium-ion batteries. However, conventional synthesis methods are limited by the slow heating rate, sluggish reaction dynamics, high energy consumption, and long reaction time. To overcome these challenges, we first employed a high-temperature shock (HTS) strategy for fast synthesis of the NCM, and the approaching ultimate reaction rate of solid phase transition is deeply investigated for the first time. In the HTS process, ultrafast average reaction rate of phase transition from Ni0.6Co0.2Mn0.2(OH)2 to Li- containing oxides is 66.7 (% s-1), that is, taking only 1.5 s. An ultrahigh heating rate leads to fast reaction kinetics, which induces the rapid phase transition of NCM cathodes. The HTS-synthesized nickel-rich layered oxides perform good cycling performances (94% for NCM523, 94% for NCM622, and 80% for NCM811 after 200 cycles at 4.3 V). These findings might also assist to pave the way for preparing effectively Ni-rich layered oxides for lithium-ion batteries.

3.
Adv Mater ; : e2405956, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819626

RESUMO

Despite widely used as a commercial cathode, the anisotropic 1D channel hopping of lithium ions along the [010] direction in LiFePO4 prevents its application in fast charging conditions. Herein, an ultrafast nonequilibrium high-temperature shock technology is employed to controllably introduce the Li-Fe antisite defects and tensile strain into the lattice of LiFePO4. This design makes the study of the effect of the strain field on the performance further extended from the theoretical calculation to the experimental perspective. The existence of Li-Fe antisite defects makes it feasible for Li+ to move from the 4a site of the edge-sharing octahedra across the ab plane to 4c site of corner-sharing octahedra, producing a new diffusion channel different from [010]. Meanwhile, the presence of a tensile strain field reduces the energy barrier of the new 2D diffusion path. In the combination of electrochemical experiments and first-principles calculations, the unique multiscale coupling structure of Li-Fe antisite defects and lattice strain promotes isotropic 2D interchannel Li+ hopping, leading to excellent fast charging performance and cycling stability (high-capacity retention of 84.4% after 2000 cycles at 10 C). The new mechanism of Li+ diffusion kinetics accelerated by multiscale coupling can guide the design of high-rate electrodes.

4.
Angew Chem Int Ed Engl ; 62(26): e202303600, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37041661

RESUMO

Bimetallic alloy nanomaterials are promising anode materials for potassium-ion batteries (KIBs) due to their high electrochemical performance. The most well-adopted fabrication method for bimetallic alloy nanomaterials is tube furnace annealing (TFA) synthesis, which can hardly satisfy the trade-off among granularity, dispersity and grain coarsening due to mutual constraints. Herein, we report a facile, scalable and ultrafast high-temperature radiation (HTR) method for the fabrication of a library of ultrafine bimetallic alloys with narrow size distribution (≈10-20 nm), uniform dispersion and high loading. The metal-anchor containing heteroatoms (i.e., O and N), ultrarapid heating/cooling rate (≈103  K s-1 ) and super-short heating duration (several seconds) synergistically contribute to the successful synthesis of small-sized alloy anodes. As a proof-of-concept demonstration, the as-prepared BiSb-HTR anode shows ultrahigh stability indicated by negligible degradation after 800 cycles. The in situ X-ray diffraction reveals the K+ storage mechanism of BiSb-HTR. This study can shed light on the new, rapid and scalable nanomanufacturing of high-quality bimetallic alloys toward extended applications of energy storage, energy conversion and electrocatalysis.


Assuntos
Ligas , Potássio , Biblioteca Gênica , Temperatura Baixa , Eletrodos , Íons
5.
Small ; 18(23): e2200954, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35557492

RESUMO

Activated porous carbons (APCs) are traditionally produced by heat treatment and KOH activation, where the production time can be as long as 2 h, and the produced activated porous carbons suffer from relatively low specific surface area and porosity. In this study, the fast high-temperature shock (HTS) carbonization and HTS-KOH activation method to synthesize activated porous carbons with high specific surface area of ≈843 m2 g-1 , is proposed. During the HTS process, the instant Joule heating (at a heating speed of ≈1100 K s-1 ) with high temperature and rapid quenching can effectively produce abundant pores with homogeneous size-distribution due to the instant melt of KOH into small droplets, which facilitates the interaction between carbon and KOH to form controllable, dense, and small pores. The as-prepared HTS-APC-based supercapacitors deliver a high energy density of 25 Wh kg-1 at a power density of 582 W kg-1 in the EMIMBF4 ionic liquid. It is believed that the proposed HTS technique has created a new pathway for manufacturing activated porous carbons with largely enhanced energy density of supercapacitors, which can inspire the development of energy storage materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...