Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 10(9): uhad152, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37701456

RESUMO

The development of tree peony annual shoots is characterized by "withering", which is related to whether there are bud points in the leaf axillaries of annual shoots. However, the mechanism of "withering" in tree peony is still unclear. In this study, Paeonia ostii 'Fengdan' and P. suffruticosa 'Luoyanghong' were used to investigate dynamic changes of annual shoots through anatomy, physiology, transcriptome, and metabolome. The results demonstrated that the developmental dynamics of annual shoots of the two cultivars were comparable. The withering degree of P. suffruticosa 'Luoyanghong' was higher than that of P. ostii 'Fengdan', and their upper internodes of annual flowering shoots had a lower degree of lignin deposition, cellulose, C/N ratio, showing no obvious sclerenchyma, than the bottom ones and the whole internodes of vegetative shoot, which resulted in the "withering" of upper internodes. A total of 36 phytohormone metabolites were detected, of which 33 and 31 were detected in P. ostii 'Fengdan' and P. suffruticosa 'Luoyanghong', respectively. In addition, 302 and 240 differentially expressed genes related to lignin biosynthesis, carbon and nitrogen metabolism, plant hormone signal transduction, and zeatin biosynthesis were screened from the two cultivars. Furtherly, 36 structural genes and 40 transcription factors associated with the development of annual shoots were highly co-expressed, and eight hub genes involved in this developmental process were identified. Consequently, this study explained the developmental dynamic on the varied annual shoots through multi-omics, providing a theoretical foundation for germplasm innovation and the mechanized harvesting of tree peony annual shoots.

2.
Anim Sci J ; 94(1): e13871, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720923

RESUMO

Our objective was to determine effects of feeding lamb's peony byproducts, including stem and leaves (PSL), root (PR), and seeds meal (PSM), on growth, rumen fermentation, slaughter parameters, and meat quality. Sixty-four lambs (14.0 ± 2.1 kg) were allocated into eight treatments based on BW: no additives (CON), 0.15% aureomycin (CONA), low/high levels of PSL (5%/10% PSL replaced 5%/10% Chinese hay), PR (basal diet with 0.5%/1.0% PR), PSM (5%/10% PSM replaced 5%/10% soybean meal). Growth, digestibility, and rumen fermentation had dose responses whereas slaughter parameters, meat quality, or amino acids indexes were not. Peony byproducts increased DMI (p < 0.001) compared to CON, but higher levels were more advantageous (p = 0.003). However, low levels of peony byproducts decreased the NH3 -N concentration, but increased total volatile fatty acids mole percent more than high levels of that (p < 0.001). All peony byproducts increased dressing percentage (p < 0.05), increased pH and tenderness than CON (p < 0.05). In addition, PSL and PSM improved amino acid profiles of meat compared to CON, and were even better than CONA (p < 0.05). Therefore, peony byproducts not only improved animal growth but also reduced the frequency of antibiotic use in animal feeding.


Assuntos
Paeonia , Rúmen , Ovinos , Animais , Rúmen/metabolismo , Fermentação , Antibacterianos/farmacologia , Carneiro Doméstico , Carne/análise , Dieta/veterinária , Ração Animal/análise , Digestão
3.
Hortic Res ; 10(7): uhad110, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37577399

RESUMO

Great progress has been made in our understanding of floral organ identity determination and its regulatory network in many species; however, the quantitative genetic basis of floral organ number variation is far less well understood for species-specific traits from the perspective of population variation. Here, using a tree peony (Paeonia suffruticosa Andrews, Paeoniaceae) cultivar population as a model, the phenotypic polymorphism and genetic variation based on genome-wide association studies (GWAS) and expression quantitative trait locus (eQTL) analysis were analyzed. Based on 24 phenotypic traits of 271 representative cultivars, the transcript profiles of 119 cultivars were obtained, which indicated abundant genetic variation in tree peony. In total, 86 GWAS-related cis-eQTLs and 3188 trans-eQTL gene pairs were found to be associated with the numbers of petals, stamens, and carpels. In addition, 19 floral organ number-related hub genes with 121 cis-eQTLs were obtained by weighted gene co-expression network analysis, among which five hub genes belonging to the ABCE genes of the MADS-box family and their spatial-temporal co-expression and regulatory network were constructed. These results not only help our understanding of the genetic basis of floral organ number variation during domestication, but also pave the way to studying the quantitative genetics and evolution of flower organ number and their regulatory network within populations.

4.
BMC Plant Biol ; 22(1): 405, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982415

RESUMO

BACKGROUND: Flower color patterns play an important role in the evolution and subsequent diversification of flowers by attracting animal pollinators. This interaction can drive the diversity observed in angiosperms today in many plant families such as Liliaceae, Paeoniaceae, and Orchidaceae, and increased their ornamental values. However, the molecular mechanism underlying the differential distribution of anthocyanins within petals remains unclear in Paeonia. RESULTS: In this study, we used an intersectional hybrid between the section Moutan and Paeonia, hereafter named Paeonia 'He Xie', which has purple flowers with dark purple blotches. After Ultra-high performance liquid chromatography-diode array detector (UPLC-DAD) analysis of blotched and non-blotched parts of petals, we found the anthocyanin content in the blotched part was always higher than that in the non-blotched part. Four kinds of anthocyanins, namely cyanidin-3-O-glucoside (Cy3G), cyanidin-3,5-O-glucoside (Cy3G5G), peonidin-3-O-glucoside (Pn3G), and peonidin-3,5-O-glucoside (Pn3G5G) were detected in the blotched parts, while only Cy3G5G and Pn3G5G were detected in the non-blotched parts. This suggests that glucosyltransferases may play a vital role in the four kinds of glucosylated anthocyanins in the blotched parts. Moreover, 2433 differentially expressed genes (DEGs) were obtained from transcriptome analysis of blotched and non-blotched parts, and a key UDP-glycosyltransferase named PhUGT78A22 was identified, which could use Cy3G and Pn3G as substrates to produce Cy3G5G and Pn3G5G, respectively, in vitro. Furthermore, silencing of PhUGT78A22 reduced the content of anthocyanidin 3,5-O-diglucoside in P. 'He Xie'. CONCLUSIONS: A UDP-glycosyltransferase, PhUGT78A22, was identified in P. 'He Xie', and the molecular mechanism underlying differential distribution of anthocyanins within petals was elucidated. This study provides new insights on the biosynthesis of different kinds of anthocyanins within colorful petals, and helps to explain petal blotch formation, which will facilitate the cultivar breeding with respect to increasing ornamental value. Additionally, it provides a reference for understanding the molecular mechanisms responsible for precise regulation of anthocyanin biosynthesis and distribution patterns.


Assuntos
Antocianinas , Paeonia , Flores/química , Flores/genética , Glucose , Glucosídeos , Glicosiltransferases/genética , Paeonia/genética , Melhoramento Vegetal , Difosfato de Uridina/análise
5.
Plant Sci ; 317: 111189, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35193738

RESUMO

Paeonia ostii is an authorized novel vegetable oil crop due to its seeds rich in unsaturated fatty acids (UFAs) especially α-linolenic acid (ALA), which overweight the current available edible oil. However, little is known on the regulation mechanism of UFAs biosynthesis during its seed development. Here, we used transcriptome and proteome data combining phytochemistry means to uncover the relationship between abscisic acid (ABA) signaling and UFAs biosynthesis during P. ostii seed development. Based on transcriptome and proteome analysis, two desaturases of omega-6 and omega-3 fatty acid, named as PoFAD2 and PoFAD3 responsible for ALA biosynthesis were identified. Then, an ABSCISIC ACID-INSENSITIVE 5 (ABI5) proteins was identified as an upstream transcriptional factor, which activated the expression of PoFAD3 instead of PoFAD2. Moreover, silencing of PoABI5 repressed the response of PoFAD3 to ABA. This study provides the first view on the connection between the function of ABA signaling factors and ALA biosynthesis in the P. ostii seed, which lays the foundation for studies on the regulatory mechanism of ABA signaling involved in the UFAs synthesis during seeds development, meanwhile, it will shed light on manipulation of ALA content for satisfying human demands on high quality of edible oil or healthy supplement.


Assuntos
Ácidos Graxos Ômega-3 , Paeonia , Ácido Abscísico/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/análise , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados/análise , Paeonia/metabolismo , Sementes/metabolismo
6.
Food Funct ; 12(23): 11777-11789, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34739020

RESUMO

As emerging woody oil crops, the tree peony seeds recently have been attracting great attention for their metabolites and bioactivities. In this research, the phytochemical profiles of the seed coats of tree peonies from different production regions were investigated systematically. Twelve phytochemicals were separated and prepared, mainly belonging to stilbenes. A great variation in stilbene content was detected in the three Paeonia plants, and Paeonia ostii seed coats (POSC) had significantly higher contents of the stilbene compounds than other species. There were nineteen significant correlations between ecogeographical factors and the predominant compounds. A clear discrimination among the species was observed in their HPLC fingerprint and chemometric analysis. Furthermore, POSC extracts could significantly reduce the starch mediated PBG (postprandial blood glucose) levels in normal/diabetic mice. Meanwhile, in vitro enzyme tests revealed that the predominant compounds, suffruticosol B and ampelopsin D, could effectively and competitively inhibit α-glucosidase, indicating that POSC could be a natural source of hypoglycemics in the food and drug fields.


Assuntos
Hipoglicemiantes , Paeonia/química , Compostos Fitoquímicos , Sementes/química , Animais , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Flavonoides/química , Hipoglicemiantes/análise , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Masculino , Camundongos , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Estilbenos/química , Árvores
7.
Front Nutr ; 8: 679129, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222303

RESUMO

Background: Moutan cortex radicis (MCR), as a common traditional Chinese medicine, has been widely used as an antipyretic, antiseptic, and anti-inflammatory agent in China. Objectives: This study aimed to investigate the effects of dietary MCR supplementation on the antioxidant capacity and intestinal health of the pigs and to explore whether MCR exerts positive effects on intestinal health via regulating nuclear factor kappa-B (NF-κB) signaling pathway and intestinal microbiota. Methods: MCR powder was identified by LC-MS analysis. Selected 32 weaned piglets (21 d of age, 6.37 ± 0.10 kg average BW) were assigned (8 pens/diet, 1 pig/pen) to 4 groups and fed with a corn-soybean basal diet supplemented with 0, 2,000, 4,000, and 8,000 mg/kg MCR for 21 d. After the piglets were sacrificed, antioxidant indices, histomorphology examination, and inflammatory signaling pathway expression were assessed. The 16s RNA sequencing was used to analyze the effects of MCR on the intestinal microbiota structure of piglets. Results: Supplemental 4,000 mg/kg MCR significantly increased (P < 0.05) the average daily weight gain (ADG), average daily feed intake (ADFI), total antioxidative capability, colonic short-chain fatty acids (SCFA) concentrations, and the crypt depth in the jejunum but decreased (P < 0.05) the mRNA expression levels of interferon γ, tumor necrosis factor-α, interleukin-1ß, inhibiting kappa-B kinase ß (IKKß), inhibiting nuclear factor kappa-B (IκBα), and NF-κB in the jejunum and ileum. Microbiota sequencing identified that MCR supplementation significantly increased the microbial richness indices (Chao1, ACE, and observed species, P < 0.05) and the relative abundances of Firmicutes and Lactobacillus (P < 0.05), decreased the relative abundances of Bacteroides, Parabacteroides, unidentified_Lachnospiraceae, and Enterococcus (P < 0.05) and had no significant effects on the diversity indices (Shannon and Simpson, P > 0.05). Microbial metabolic phenotypes analysis also showed that the richness of aerobic bacteria and facultative anaerobic bacteria, oxidative stress tolerance, and biofilm forming were significantly increased (P < 0.05), and the richness of anaerobic bacteria and pathogenic potential of gut microbiota were reduced (P < 0.05) by MCR treatment. Regression analysis showed that the optimal MCR supplemental level for growth performance, serum antioxidant capacity, and intestinal health of weaned piglets was 3,420 ~ 4,237 mg/kg. Conclusions: MCR supplementation improved growth performance and serum antioxidant capacity, and alleviated intestinal inflammation by inhibiting the IKKß/IκBα/NF-κB signaling pathway and affecting intestinal microbiota in weaned piglets.

8.
Physiol Plant ; 173(3): 961-977, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34237150

RESUMO

Paeonia is recognized globally due to its ornamental value. However, the mechanisms behind the formation of distinct levels of lignification in Paeonia stems remain largely unknown. In this study, we selected three representative Paeonia species, namely P. ostii (shrub), P. lactiflora (herb), and P. × 'Hexie' (semi-shrub), to evaluate and contrast their respective anatomical structure, phytochemical composition and transcriptomic profile. Our results showed that the degree of lignin deposition on the cell wall, along with the total amount of lignin and its monomers (especially G-lignin) were higher in P. ostii stems compared to the other two species at almost all development stages except 80 days after flowering. Furthermore, we estimated a total number of unigenes of 60,238 in P. ostii, 43,563 in P. × 'Hexie', and 40,212 in P. lactiflora from stem transcriptome. We then built a co-expression network of 25 transcription factors and 21 enzyme genes involved in lignin biosynthesis and identified nine key candidate genes. The expression patterns of these genes were positively correlated with the transcription levels of PAL, C4H, 4CL2, CCR, and COMT, as well as lignin content. Moreover, the highest relative expression levels of CCR, 4CL2, and C4H were found in P. ostii. This study provides an explanation for the observed differences in lignification between woody and herbaceous Paeonia stems, and constitutes a novel reference for molecular studies of stem-specific lignification process and lignin biosynthesis that can impact the ornamental industry.


Assuntos
Paeonia , Parede Celular/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Lignina/metabolismo , Paeonia/genética , Paeonia/metabolismo , Transcriptoma/genética
9.
J Ethnopharmacol ; 273: 113985, 2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-33667571

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Paeonia plants have been widely used as traditional Chinese medicinal materials for more than 2,000 years in the treatment of cardiovascular, extravasated blood and female genital diseases; paeoniflorin and paeonol have been implicated as the plants' primary active ingredients. AIM OF THE STUDY: Previous studies have been singularly focused on the chemical constituents and content variation of the Paeonia roots in the advancement of traditional Chinese medicine, with the plants' stems and leaves considered useless. This study aims to explore the chemical constituents, content variation, and antioxidant capacity in Paeonia stems and leaves for the future utilization of traditional Chinese medicine, given that current practices of digging and trade endanger Paeonia in the wild. MATERIALS AND METHODS: Herein, secondary metabolites from the stems and leaves from six developmental stages of the annual growth cycle of Paeonia ostii T. Hong & J. X. Zhang, P. 'Hexie', and P. lactiflora Pall. were qualitatively and quantitatively analyzed via high-performance liquid chromatography with a diode array detector (HPLC-DAD) and high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS). Antioxidant capacity at each stage was also evaluated by various free radical scavenging assays. RESULTS: A total of 24 metabolites were detected and identified, including 5 monoterpene glycosides, 4 tannins, 5 phenols, 9 flavonoids, and paeonol. Excepting paeonol and the phenols, the levels of each metabolite category were significantly higher in the leaves than the stems during all developmental stages. The paeoniflorin content in the P. ostii leaves was the highest during the first developmental stage and higher than the standards of the Chinese Pharmacopoeia, suggesting it to be the optimal harvesting stage for medicinal uses. Notably, the antioxidant capacity of the leaves was significantly greater than in the stems, particularly for the leaves of P. 'Hexie'. CONCLUSION: Our study indicates that the leaves of P. 'Hexie' have the potential to be a worthy medicinal substitute to Paeonia roots due to their high monoterpene glycosides, phenols, and flavonoids as well as their strong antioxidant capacity. Further, this study provides a theoretical basis for the development and utilization of non-root Paeonia plant sections as medicinal plant resources.


Assuntos
Antioxidantes/farmacologia , Paeonia/química , Folhas de Planta/química , Caules de Planta/química , Antioxidantes/química , Flavonoides/química , Glicosídeos/química , Paeonia/classificação , Fenóis/química , Compostos Fitoquímicos/análise , Fitoterapia , Plantas Medicinais , Especificidade da Espécie , Taninos/química
10.
Physiol Plant ; 172(1): 64-76, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33247451

RESUMO

Chalcone synthase (CHS) is the key enzyme in the flavonoid biosynthetic pathway and has been studied in many plants, but the function of the CHS gene has not been well characterized in Paeonia ostii. In this study, we obtained a CHS homolog gene from P. ostii, which possessed the putative conserved amino acids of chalcone synthase by multiple alignment analysis and demonstrated the highest expression in developing seeds. In vitro assays of the recombinant PoCHS protein confirmed enzymatic activity using malonyl-CoA and 4-coumaroyl-CoA as substrates, and the optimal pH and reaction temperature were 7.5 and 40 °C, respectively. Furthermore, ectopic over-expression of PoCHS in Arabidopsis up-regulated the expression levels of genes involved in seed development (ABI), glycolysis (PKp2, PDH-E1a, and SUS2/3), and especially fatty acid biosynthesis (BCCP2, CAC2, CDS2, FatA, and FAD3). This resulted in an increased unsaturated fatty acid content, especially α-linolenic acid, in transgenic Arabidopsis seeds. In this study, we examined the functions of CHS homolog of P. ostii and demonstrated its new function in seed fatty acid biosynthesis.


Assuntos
Arabidopsis , Paeonia , Arabidopsis/genética , Vias Biossintéticas/genética , Ácidos Graxos , Paeonia/genética , Sementes/genética
11.
J Exp Bot ; 70(18): 4749-4762, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31106836

RESUMO

Flavonoids are secondary metabolites widely distributed among angiosperms, where they play diverse roles in plant growth, development, and evolution. The regulation of flavonoid biosynthesis in plants has been extensively studied at the transcriptional level, but post-transcriptional, translational, and post-translational control of flavonoid biosynthesis remain poorly understood. In this study, we analysed post-translational regulation of flavonoid biosynthesis in the ornamental plant Paeonia, using proteome and ubiquitylome profiling, in conjunction with transcriptome data. Three enzymes involved in flavonoid biosynthesis were identified as being putative targets of ubiquitin-mediated degradation. Among these, chalcone synthase (PhCHS) was shown to have the greatest number of ubiquitination sites. We examined PhCHS abundance in petals using PhCHS-specific antibody and found that its accumulation decreased at later developmental stages, resulting from 26S proteasome-mediated degradation. We further identified a ring domain-containing protein (PhRING-H2) that physically interacts with PhCHS and demonstrated that PhRING-H2 is required for PhCHS ubiquitination. Taken together, our results suggest that PhRING-H2-mediates PhCHS ubiquitination and degradation is an important mechanism of post-translational regulation of flavonoid biosynthesis in Paeonia, providing a theoretical basis for the manipulation of flavonoid biosynthesis in plants.


Assuntos
Aciltransferases/metabolismo , Paeonia/metabolismo , Proteínas de Plantas/metabolismo , Ubiquitinação , Flores/química , Flores/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
12.
Foods ; 9(1)2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31905710

RESUMO

Paeonia ostii is an important woody oil plant cultivated in China on a large scale. Its seed oil is enriched with unsaturated fatty acids and a high content of alpha-linolenic acid (ALA), which are beneficial to human health. The aim of this research is to determine the qualitative traits characteristic of P. ostii seed from various production areas in China. In this study, seed quality traits were evaluated on the basis of proximate composition, content of fatty acids, tocopherol, secondary metabolites, and the antioxidant activity of seed coat (PSC) and kernel (PSK). A high content of total fatty acids (298.89-399.34 mg g-1), crude protein (16.91%-22.73%), and total tocopherols (167.83-276.70 µg g-1) were obtained from PSK. Significant differences were found in the content of palmitic acids (11.31-14.27 mg g-1), stearic acids (2.42-4.24 mg g-1), oleic acids (111.25-157.63 mg g-1), linoleic acids (54.39-83.59 mg g-1), and ALA (99.85-144.71 mg g-1) in the 11 main production areas. Eight and seventeen compounds were detected in PSC and PSK, respectively. A significantly higher content of total phenols was observed in PSC (139.49 mg g-1) compared with PSK (3.04 mg g-1), which was positively related to antioxidant activity. This study indicates that seeds of P. ostii would be a good source of valuable oil and provides a basis for seed quality evaluation for the production of edible oil and potential ALA supplements from the promising woody oil plant.

13.
Plant Cell Physiol ; 60(3): 599-611, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30496505

RESUMO

Flower color patterns play critical roles in plant-pollinator interactions and represent one of the most common adaptations during angiosperm evolution. However, the molecular mechanisms underlying flower color pattern formation are less understood in non-model organisms. The aim of this study was to identify genes involved in the formation of petal blotches in tree peony (Paeonia suffruticosa) through transcriptome profiling and functional experiments. We identified an R2R3-MYB gene, PsMYB12, representing a distinct R2R3-MYB subgroup, with a spatiotemporal expression pattern tightly associated with petal blotch development. We further demonstrated that PsMYB12 interacts with a basic helix-loop-helix (bHLH) and a WD40 protein in a regulatory complex that directly activates PsCHS expression, which is also specific to the petal blotches. Together, these findings advance our understanding of the molecular mechanisms of pigment pattern formation beyond model plants. They also benefit molecular breeding of tree peony cultivars with novel color patterns and promote germplasm innovation.


Assuntos
Paeonia/metabolismo , Fatores de Transcrição/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Antocianinas/genética , Antocianinas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Paeonia/genética , Fatores de Transcrição/genética
14.
Phytochemistry ; 146: 16-24, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29207319

RESUMO

Mu Dan Pi is a traditional Chinese medicine used to treat inflammation, cancer, allergies, diabetes, angiocardiopathy, and neurodegenerative diseases. In this study, the metabolome variation within Mu Dan Pi collected from 372 tree peony cultivars was systematically investigated. In total, 42 metabolites were identified, comprising of 14 monoterpene glucosides, 11 tannins, 8 paeonols, 6 flavonoids, and 3 phenols. All cultivars revealed similar metabolite profiles, however, they were further classified into seven groups on the basis of their varying metabolite contents by hierarchical cluster analysis. Traditional cultivars for Mu Dan Pi were found to have very low metabolite contents, falling into clusters I and II. Cultivars with the highest amounts of metabolites were grouped in clusters VI and VII. Five potential cultivars, namely, 'Bai Yuan Qi Guan', 'Cao Zhou Hong', 'Da Zong Zi', 'Sheng Dan Lu', and 'Cheng Xin', with high contents of monoterpene glycosides, tannins, and paeonols, were further screened. Interestingly, the majority of investigated cultivars had relatively higher metabolite contents compared to the traditional medicinal tree peony cultivars.


Assuntos
Medicamentos de Ervas Chinesas/isolamento & purificação , Paeonia/química , Compostos Fitoquímicos/isolamento & purificação , Medicamentos de Ervas Chinesas/química , Medicina Tradicional Chinesa , Estrutura Molecular , Compostos Fitoquímicos/química , Raízes de Plantas/química
15.
Plant Cell Rep ; 36(1): 151-162, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27787596

RESUMO

KEY MESSAGE: Our study is the first to demonstrate that PSK1 , a SKP1 -like gene homologue, is involved in salinity tolerance. Our functional characterization of PSK1 provides new insights into tree peony development. A homologous gene of S-phase kinase-associated protein1 (SKP1) was cloned from tree peony (Paeonia suffruticosa) and denoted as PSK1. The 462-bp open reading frame of PSK1 was predicted to encode a protein comprising 153 amino acids, with a molecular mass of 17 kDa. The full-length gene was 1,634 bp long and included a large 904-bp intron. PSK1 transcription was detected in all tissues, with the highest level observed in sepals, followed by leaves. Under salinity stress, overexpression of PSK1 in Arabidopsis resulted in increased germination percentages, cotyledon greening, and fresh weights relative to wild-type plants. Furthermore, transgenic Arabidopsis lines containing 35S::PSK1 displayed increased expression of genes that would be essential for reproduction and growth under salinity stress: ASK1, LEAFY, FT, and CO involved in flower development and flowering time as well as P5CS, RAB18, DREB, and SOD1-3 contributing to salinity tolerance. Our functional characterization of PSK1 adds to global knowledge of the multiple functions of previously explored SKP1-like genes in plants and sheds light on the molecular mechanism underlying its role in salinity tolerance. Our findings also provide information on the function and molecular mechanism of PSK1 in tree peony flower development, thereby revealing a theoretical basis for regulation of flowering and conferral of salinity tolerance in tree peony.


Assuntos
Arabidopsis/genética , Arabidopsis/fisiologia , Genes de Plantas , Paeonia/genética , Proteínas de Plantas/metabolismo , Salinidade , Tolerância ao Sal/genética , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , Carboidratos/análise , Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/química , Plantas Geneticamente Modificadas , Prolina/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína
16.
J Exp Bot ; 66(21): 6563-77, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26208646

RESUMO

Anthocyanins are major pigments in plants. Methylation plays a role in the diversity and stability of anthocyanins. However, the contribution of anthocyanin methylation to flower coloration is still unclear. We identified two homologous anthocyanin O-methyltransferase (AOMT) genes from purple-flowered (PsAOMT) and red-flowered (PtAOMT) Paeonia plants, and we performed functional analyses of the two genes in vitro and in vivo. The critical amino acids for AOMT catalytic activity were studied by site-directed mutagenesis. We showed that the recombinant proteins, PsAOMT and PtAOMT, had identical substrate preferences towards anthocyanins. The methylation activity of PsAOMT was 60 times higher than that of PtAOMT in vitro. Interestingly, this vast difference in catalytic activity appeared to result from a single amino acid residue substitution at position 87 (arginine to leucine). There were significant differences between the 35S::PsAOMT transgenic tobacco and control flowers in relation to their chromatic parameters, which further confirmed the function of PsAOMT in vivo. The expression levels of the two homologous AOMT genes were consistent with anthocyanin accumulation in petals. We conclude that AOMTs are responsible for the methylation of cyanidin glycosides in Paeonia plants and play an important role in purple coloration in Paeonia spp.


Assuntos
Metiltransferases/genética , Paeonia/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Antocianinas/genética , Antocianinas/metabolismo , Cor , Flores/genética , Flores/metabolismo , Metilação , Metiltransferases/química , Metiltransferases/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Paeonia/metabolismo , Filogenia , Pigmentação , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Alinhamento de Sequência , Nicotiana/genética , Nicotiana/metabolismo
17.
BMC Genomics ; 14: 886, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24341681

RESUMO

BACKGROUND: Microsatellites are ubiquitous in genomes of various organisms. With the realization that they play roles in developmental and physiological processes, rather than exist as 'junk' DNA, microsatellites are receiving increasing attention. Next-generation sequencing allows acquisition of large-scale microsatellite information, and is especially useful for plants without reference genome sequences. RESULTS: In this study, enriched DNA libraries of tree peony, a well-known ornamental woody shrub, were used for high-throughput microsatellite development by 454 GS-FLX Titanium pyrosequencing. We obtained 675,221 reads with an average length of 356 bp. The total size of examined sequences was 240,672,018 bp, from which 237,134 SSRs were identified. Of these sequences, 164,043 contained SSRs, with 27% featuring more than one SSR. Interestingly, a high proportion of SSRs (43%) were present in compound formation. SSRs with repeat motifs of 1-4 bp (mono-, di-, tri-, and tetra-nucleotide repeats) accounted for 99.8% of SSRs. Di-nucleotide repeats were the most abundant. As in most plants, the predominant motif in tree peony was (A/T)n, with (G/C)n less common. The lengths of SSRs were classified into 11 groups. The shortest SSRs (10 bp) represented 1% of the total number, whereas SSRs 21-30 and 101-110 bp long accounted for 26% and 29%, respectively, of all SSRs. Many sequences (42,111) were mapped to CDS (coding domain sequence) regions using Arabidopsis as a reference. GO annotation analysis predicted that CDSs with SSRs performed various functions associated with cellular components, molecular functions, and biological processes. Of 100 validated primer pairs, 24 were selected for polymorphism analysis among 23 genotypes; cluster analysis of the resulting data grouped genotypes according to known relationships, confirming the usefulness of the developed SSR markers. CONCLUSIONS: The results of our large-scale SSR marker development using tree peony are valuable for investigating plant genomic structural evolution and elucidating phenotypic variation in this species during its evolution and artificial selection. The newly identified SSRs should be useful for genetic linkage map construction, QTL mapping, gene location and cloning, and molecular marker-assisted breeding. In addition, the genome-wide marker resources generated in this study should aid genomic studies of tree peony and related species.


Assuntos
Repetições de Microssatélites , Paeonia/genética , DNA de Plantas , Biblioteca Gênica , Marcadores Genéticos , Genoma de Planta , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Motivos de Nucleotídeos , Fases de Leitura Aberta , Paeonia/classificação , Filogenia , Reprodutibilidade dos Testes
18.
Gene ; 493(1): 113-23, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22155314

RESUMO

Tree peony (Paeonia suffricotisa) cultivars have a unique character compared with wild species; the stamen petalody results in increased whorls of petals and generates different flower forms, which are one of the most important traits for cultivar classification. In order to investigate how petaloid stamens are formed, we obtained the coding sequence (666 bp) and genomic DNA sequence of the PsTM6 genes (belongs to B subfamily of MADS-box gene family) from 23 tree peony samples, Five introns and six exons consisted of the genomic DNA sequence. The analysis of cis-acting regulatory elements in the third and fourth intron indicated that they were highly conserved in all samples. Partial putative amino acids were analyzed and the results suggested that functional differentiation of PsTM6 paralogs apparently affected stamen petalody and flower shape formation due to due to amino acid substitution caused by differences in polarity and electronic charge. Sliding window analysis indicated that the different regions of PsTM6 were subjected to different selection forces, especially in the K domain. This is the first attempt to investigate genetic control of the stamen petalody based on the PsTM6 sequence. This will provide a basis for understanding the evolution of PsTM6 and its the function of in determining stamen morphology of tree peony.


Assuntos
Flores/anatomia & histologia , Flores/genética , Genes de Plantas , Proteínas de Domínio MADS/genética , Paeonia/genética , Sequência de Aminoácidos , Sequência de Bases , Flores/crescimento & desenvolvimento , Genes Reguladores , Dados de Sequência Molecular , Paeonia/crescimento & desenvolvimento , Filogenia , Árvores/genética
19.
Chem Pharm Bull (Tokyo) ; 58(6): 843-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20522997

RESUMO

Three new oligostilbenes, trans-suffruticosol D (1), cis-suffruticosol D (2), and cis-gnetin H (7), were isolated along with the eight known stilbenes, trans-resveratrol (3), trans-epsilon-viniferin (4), cis-epsilon-viniferin (5), gnetin H (6), suffruticosol A (8), suffruticosol B (9), suffruticosol C (10), and cis-ampelopsin E (11) from the seeds of Paeonia suffruticosa. Compounds 3-6 were isolated for the first time from this plant species, and compound 11 was isolated for the first time from the genus Paeonia. The structures of the new compounds were elucidated based on spectral analyses, including 1D and 2D NMR experiments. The absolute configuration of compound 1 was determined by quantum chemical calculation of the electronic circular dichroism and comparison with the experimental circular dichroism spectrum.


Assuntos
Paeonia/química , Sementes/química , Estilbenos/química , Isomerismo , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Estilbenos/isolamento & purificação
20.
Zhong Yao Cai ; 31(3): 327-31, 2008 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-18619232

RESUMO

OBJECTIVE: To determine the content of paeonol and paeoniflorin in wild tree peony species and main medicinal cultivars in order to provide scientific foundations for the industrialization of tree peony cortex. METHODS: HPLC was used to compare the effective content of different resources. RESULTS: (1) The content range of paeonol and paeoniflorin of 7 wild species was 0.10%-0.61% and 2.22%-5.57%, respectively; (2) The content range of paeonol and paeoniflorin of all cultivars from different producing area was 0.33%-1.43% and 1.60%-2.85%; (3) The content range of paeonol and paeoniflorin of different cultivars in the same place (Changping, Beijing) was 0.27%-0.75% and 1.87%-3.96%; (4) The content range of paeonol of cultivars from the same area was 0.34%-1.10%. There was no significant difference of relative content of paeoniflorin from the same areas. CONCLUSION: The relative content of main medicinal components of wild species was not higher than cultivar; the differences were significant among cultivars; the relative content of paeonol of 'JSF' was high; more attention of choosing cultivars and producing areas should be paid in tree peony cortex producing.


Assuntos
Acetofenonas/análise , Benzoatos/análise , Hidrocarbonetos Aromáticos com Pontes/análise , Glucosídeos/análise , Paeonia/química , Plantas Medicinais/química , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/normas , Monoterpenos , Paeonia/classificação , Paeonia/crescimento & desenvolvimento , Casca de Planta/química , Raízes de Plantas/química , Plantas Medicinais/crescimento & desenvolvimento , Controle de Qualidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...