Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Sci ; 20(9): 3570-3589, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993556

RESUMO

Background: Cisplatin (DDP) based combination chemotherapy is a vital method for the treatment of bladder cancer (BLca). Chemoresistance easily occurs in the course of cisplatin chemotherapy, which is one of the important reasons for the unfavorable prognosis of BLca patients. Circular RNAs (circRNAs) are widely recognized for their role in the development and advancement of BLca. Nevertheless, the precise role of circRNAs in DDP resistance for BLca remains unclear. Methods: To study the properties of circATIC, sanger sequencing, agarose gel electrophoresis and treatment with RNase R/Actinomycin D were utilized. RT-qPCR assay was utilized to assess the expression levels of circRNA, miRNA and mRNA in BLca tissues and cells. Functional experiments were conducted to assess the function of circATIC in BLca progression and chemosensitivity in vitro. Various techniques such as FISH, Dual-luciferase reporter assay, TRAP, RNA digestion assay, RIP and ChIRP assay were used to investigate the relationships between PTBP1, circATIC, miR-1247-5p and RCC2. Orthotopic bladder cancer model, xenograft subcutaneous tumor model and xenograft lung metastasis tumor model were performed to indicate the function and mechanism of circATIC in BLca progression and chemosensitivity in vivo. Results: In our study, we observed that circATIC expression was significantly enhanced in BLca tissues and cells and DDP resistant cells. Patients with higher circATIC expression have larger tumor diameter, higher incidence of postoperative metastasis and lower overall survival rate. Further experiments showed that circATIC accelerated BLca cell growth and metastasis and induced DDP resistance. Mechanistically, alternative splicing enzyme PTBP1 mediated the synthesis of circATIC. circATIC could enhance RCC2 mRNA stability via sponging miR-1247-5p or constructing a circATIC/LIN28A/RCC2 RNA-protein ternary complex. Finally, circATIC promotes RCC2 expression to enhance Epithelial-Mesenchymal Transition (EMT) progression and activate JNK signal pathway, thus strengthening DDP resistance in BLca cells. Conclusion: Our study demonstrated that circATIC promoted BLca progression and DDP resistance, and could serve as a potential target for BLca treatment.


Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos , Ribonucleoproteínas Nucleares Heterogêneas , Proteína de Ligação a Regiões Ricas em Polipirimidinas , RNA Circular , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/genética , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Cisplatino/uso terapêutico , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Animais , Linhagem Celular Tumoral , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , MicroRNAs/genética , Masculino , Feminino , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Camundongos Endogâmicos BALB C , Proliferação de Células/efeitos dos fármacos
2.
Dalton Trans ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39051938

RESUMO

The inherent poor stability of CsPbI3 nanocrystals hinders the practical application of this material. Therefore, it is still a challenge to improve the stability of CsPbI3 nanocrystals and realize their large-scale continuous preparation. In this work, we report the preparation of CsPbI3/TiO2 nanocomposites with high stability by a microfluidic method. After the combination of CsPbI3 nanorods with TiO2, the PL intensity increased by 1.3 times under excitation at 577 nm due to the passivating effect of TiO2 on the surface of CsPbI3 nanorods and its carrier transport characteristics. Meanwhile, due to the coating of TiO2, the surface exposure area of CsPbI3 nanorods is reduced, which blocks external environmental effects to some extent and effectively improves the stability of CsPbI3 nanorods. Finally, an LED with a color gamut of 142% NTSC and a color temperature (CCT) of 3952 K was obtained by combining CsPbI1.5Br1.5/TiO2 and CsPbBr3/TiO2 nanocomposites with a blue light chip (455 nm). This study shows that the continuous and controllable synthesis of all inorganic halide perovskite nanocrystals by a microfluidic method is of great significance in the fabrication of high-performance optoelectronic materials and display devices.

3.
Micromachines (Basel) ; 15(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38793144

RESUMO

In this work, ordered macropore arrays in n-type silicon wafers were fabricated by anodic etching using a double-tank electrochemical cell. The effects of the wafer thickness, etching time and voltage on the quality of macropore arrays were investigated. Homogeneous macropore arrays could be achieved in 200 µm thick silicon wafers, but could not be obtained from 300 and 400 µm thick silicon wafers. Highly ordered macropore arrays with an aspect ratio of 19 were fabricated in 200 µm thick n-type silicon at 4.5 V. The etching current decreases in 200 µm thick silicon but increases in thicker silicon with an increase in time. It demonstrates that the minority carrier transportation capability from the illuminated surface to the reactive surface is different for silicon wafers with different thicknesses. The minority carrier concentration at the illuminated surface for stable macropore formation and the current under different etching voltages were calculated based on a hole transport model. The results show that appropriately decreasing wafer thickness and increasing voltage can help stable macropore array fabrication in the illumination-limited double-tank cell.

4.
iScience ; 27(3): 109125, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38420594

RESUMO

Benign prostatic hyperplasia (BPH) occurs when there is an imbalance between the proliferation and death of prostate cells, which is regulated tightly by estrogen signaling. However, the role of G protein-coupled estrogen receptor (GPER) in prostate cell survival remains ambiguous. In this study, we observed that prostates with epithelial hyperplasia showed increased yes-associated protein 1 (YAP) expression and decreased levels of estrogen and GPER. Blocking YAP through genetic or drug interventions led to reduced proliferation and increased apoptosis in the prostate epithelial cells. Interestingly, GPER agonists produced similar effects. GPER activation enhanced the phosphorylation and degradation of YAP, which was crucial for suppressing cell proliferation and survival. The Gαs/cAMP/PKA/LATS pathway, downstream of GPER, transmitted signals that facilitated YAP inhibition. This study investigated the interaction between GPER and YAP in the prostate epithelial cells and its contribution to BPH development. It lays the groundwork for future research on developing BPH treatments.

5.
Nanomaterials (Basel) ; 13(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37947683

RESUMO

Flexible capacity applications demand a large energy storage density and high breakdown electric field strength of flexible films. Here, P(VDF-HFP) with ultra-thin Al2O3 nanosheet composite films were designed and fabricated through an electrospinning process followed by hot-pressing into a sandwich structure. The results show that the insulating ultra-thin Al2O3 nanosheets and the sandwich structure can enhance the composites' breakdown strength (by 24.8%) and energy density (by 30.6%) compared to the P(VDF-HFP) polymer matrix. An energy storage density of 23.5 J/cm3 at the ultrahigh breakdown strength of 740 kV/mm can be therefore realized. The insulating test and phase-field simulation results reveal that ultra-thin nanosheets insulating buffer layers can reduce the leakage current in composites; thus, it affects the electric field spatial distribution to enhance breakdown strength. Our research provides a feasible method to increase the breakdown strength of ferroelectric polymers, which is comparable to those of non-ferroelectric polymers.

6.
Biomedicines ; 11(11)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38002029

RESUMO

(1) Background: CREB-binding protein (CBP) is a key transcriptional coactivator of androgen receptors (AR). We conducted this study to investigate the effects of CBP on AR expression and proliferation in benign prostatic hyperplasia (BPH) prostate epithelial cells. (2) Methods: By analyzing a published data set, we found that CBP was closely related to the gene expression of AR in prostate cells. We enrolled 20 BPH patients who underwent transurethral resection of the prostate (TURP) in Peking University First Hospital in 2022, and analyzed the expressions of CBP and AR in BPH prostate tissues. Then, we used ICG-001 and shRNA to inhibit CBP in prostate epithelial cells (BPH-1 cells and RWPE-1 cells), and conducted immunofluorescence, cell viability assay, flow cytometry analysis, and Western blot to analyze the effects of CBP on AR expression and proliferation in prostate epithelial cells. We also studied the interaction between CBP and AR through a co-immunoprecipitation assay. (3) Results: CBP is consistent with AR in expression intensity in prostate tissues. Inhibiting CBP decreases AR expression, and induces proliferation inhibition, apoptosis, and cell cycle arrest in BPH prostate epithelial cells. The co-immunoprecipitation assay showed that CBP binds with AR to form transcription complexes in prostate epithelial cells. (4) Conclusions: Inhibiting CBP decreases AR expression and inhibits proliferation in benign prostate epithelial cells. CBP may be a potential target to affect AR expression and the proliferation of prostate epithelial cells in BPH.

7.
Opt Express ; 31(14): 23229-23244, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37475413

RESUMO

Deterioration of the signal-to-noise ratio (SNR) is an important challenge in ultra-long multi optical line system (OLS) optical transmission systems. The non-uniform gain and cascading of the Erbium-doped fiber amplifier (EDFA) lead to SNR deterioration in transmission systems. In this paper, we propose two channel power equalization methods based on joint optimization of EDFA and Reconfigurable optical add-drop multiplexer (ROADM) configurations: 1) reinforcement learning (RL)-based channel power equalization (RL-PE) and 2) covariance matrix adaptive evolution strategy (CMA-ES) channel power equalization (CMA-PE). The simulation results indicate that the power equalization effect was improved by 1.9 dB through the CMA-PE method, while the RL-PE method led to a 1.5 dB improvement in an ultra-long 80-channel 7-OLS transmission system.

8.
Small ; 19(32): e2205644, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37078836

RESUMO

Nanocomposites with hierarchical pore structure hold great potentials for applications in the field of microwave-absorbing materials because of their lightweight and high-efficiency absorption properties. Herein, M-type barium ferrite (BaM) with ordered mesoporous structure (M-BaM) is prepared via a sol-gel process enhanced by mixed anionic and cationic surfactants. The surface area of M-BaM is enhanced almost ten times compared with BaM together with 40% reflection loss enhancing. Then M-BaM compounded with nitrogen-doped reduced graphene oxide (MBG) is synthesized via hydrothermal reaction in which the reduction and nitrogen doping of graphene oxide (GO) in situ occur simultaneously. Interestingly, the mesoporous structure is able to provide opportunity for reductant to enter the bulk M-BaM reducing its Fe3+ to Fe2+ and further forms Fe3 O4 . It requires an optimal balance among the remained mesopores in MBG, formed Fe3 O4 , and CN in nitrogen-doped graphene (N-RGO) for optimizing impedance matching and greatly increasing multiple reflections/interfacial polarization. MBG-2 (GO:M-BaM = 1:10) achieves the minimum reflection loss of -62.6 dB with an effective bandwidth of 4.2 GHz at an ultra-thin thickness of 1.4 mm. In addition, the marriage of mesoporous structure of M-BaM and light mass of graphene reduces the density of MBG.

9.
Adv Mater ; 35(25): e2211840, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36943095

RESUMO

Solution-processed perovskites are promising for hard X-ray and gamma-ray detection, but there are limited reports on their performance under extremely intense X-rays. Here, a solution-grown all-inorganic perovskite CsPbBr3 single-crystal semiconductor detector capable of operating at ultrahigh X-ray flux of 1010 photons s-1 mm-2 is reported. High-quality solution-grown CsPbBr3 single crystals are fabricated into detectors with a Schottky diode structure of eutectic gallium indium/CsPbBr3 /Au. A high reverse-bias voltage of 1000 V (435 V mm- 1 ) can be applied with a small and stable dark current of ≈60-70 nA (≈9-10 nA mm- 2 ), which enables a high sensitivity larger than 10 000 µC Gyair -1 cm- 2 and a simultaneous low detection limit of 22 nGyair s- 1 . The CsPbBr3 semiconductor detector shows an excellent photocurrent linearity and reproducibility under 58.61 keV synchrotron X-rays with flux from 106 to 1010 photons s- 1 mm- 2 . Defect characterization by thermally stimulated current spectroscopy shows a similar low defect density of a synchrotron X-ray and a lab X-ray irradiated device. Solid-state nuclear magnetic resonance spectroscopy suggests that the excellent performance of the solution-grown CsPbBr3 single crystal may be associated with its good short-range order, comparable to the spectrometer-grade melt-grown CsPbBr3 .

10.
Artigo em Inglês | MEDLINE | ID: mdl-36673722

RESUMO

Farmland heavy metal pollution-caused by both human activity and natural processes-is a major global issue. In the current study, principal component analysis (PCA), cluster analysis (CA), rare earth elements and yttrium (REY) analysis, and isotope fingerprinting were combined to identify sources of heavy metal pollution in soil from different farmland types in the upper-middle area of the Yangtze River. The concentrations of Zn and Cu were found to be higher in the vegetable base and tea plantation soil compared with their concentrations in the orangery soil. On the other hand, greater accumulation of Cd and Pb was observed in the orangery soil versus the vegetable base and tea plantation soils. Influenced by the type of bedrock, REY was significantly enriched in the orangery soil and depleted in the vegetable base soil, as compared with the tea plantation soil. The Pb isotopic compositions of the tea plantation (1.173-1.193 for 206Pb/207Pb and 2.070-2.110 for 208Pb/206Pb) and vegetable base (1.181-1.217 for 206Pb/207Pb and 2.052-2.116 for 208Pb/206Pb) soils were comparable to those of coal combustion soil. The compositions of 206Pb/207Pb (1.149-1.170) and 208Pb/206Pb (2.121-2.143) in the orangery soil fell between those observed in soils obtained from coal combustion and ore smelting sites. Using the IsoSource model, the atmospheric Pb contributions of the vegetable base, tea plantation, and orangery soils were calculated to be 66.6%, 90.1%, and 82.0%, respectively, and the bedrock contributions of Pb were calculated to be 33.3%, 9.90%, and 18.1%, respectively. Based on the PCA, CA, and REY results, as well as the Pb isotope model, it appears that heavy metals in the orangery soil may be derived from atmospheric deposition and bedrock weathering, while heavy metals in the vegetable base and tea plantation soils may be derived from mining and the use of fertilizer.


Assuntos
Metais Pesados , Metais Terras Raras , Poluentes do Solo , Humanos , Solo , Fazendas , Ítrio/análise , Chumbo/análise , Rios , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Metais Pesados/análise , Metais Terras Raras/análise , Verduras , Isótopos/análise , Carvão Mineral/análise , Chá , China , Medição de Risco
11.
Small ; 19(6): e2206125, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36461726

RESUMO

Owing to the high power density, eco-friendly, and outstanding stability, the lead-free ceramics have attracted great interest in the fields of pulsed power systems. Nevertheless, the low energy storage density of such ceramics is undoubtedly a severe problem in practical applications. To overcome this limitation, the lead-free ceramics with gradient structures are designed and fabricated using the tape-casting method herein. By optimizing the composition and distribution of the gradient-structured ceramics, the energy storage density, and efficiency can be improved simultaneously. Under a moderate electric field of 320 kV cm-1 , the value of recoverable energy storage density (Wrec ) is higher than 4 J cm-3 , and the energy storage efficiency (η) is of ≥88% for 20-5-20 and 20-10-20. Furthermore, the gradient-structured ceramics of 20-10-0-10-20 and 20-15-0-15-20 possess high applied electric field, large maximum polarization, and small remnant polarization, which give rise to ultrahigh Wrec and η on the order of ≈6.5 J cm-3 and 89-90%, respectively. In addition, the energy storage density and efficiency also exhibit excellent stability over a broad range of frequencies, temperatures, and cycling numbers. This work provides an effective strategy for improving the energy storage capability of eco-friendly ceramics.

12.
Small ; 18(50): e2107168, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36257826

RESUMO

High dielectric constant materials are of particular current interests as indispensable components in transistors, capacitors, etc. In this context, there are emerging trends to exploit defect engineering in dielectric ceramics for enhancing the performance. However, demonstrations of similar high dielectric performance in integration-compatible crystalline films are rare. Herein, such a breakthrough via the functionalization of donor-acceptor dipoles by compositional tuning in GaCu codoped ZnO films is reported. The dielectric constant reaches ~200 at 1 kHz and the optical transmittance in visible light reaches ~80%. Importantly, by analyzing the impedance spectroscopy data, prominent relaxation mechanisms in correlation with the dipole properties, enabling consistent explanations of the dielectric constant as a function of frequency are discriminated. The atomistic nature of the dipoles is revealed by the systematic X-ray spectroscopy analysis. Spectacularly, similar trends for the dielectric properties are observed, while synthesizing samples by pulsed laser deposition and ion implantation, indicating the general character of the phenomena.

13.
Small ; 18(34): e2202575, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35908160

RESUMO

Owing to the current global scenario of environmental pollution and the energy crisis, the development of new dielectrics using lead-free ceramics for application in advanced electronic and energy storage systems is essential because of the high power density and excellent stability of such ceramics. Unfortunately, most of them have low breakdown strength and/or low maximum polarization, resulting in low energy density and efficiency. To overcome this limitation here, lead-free ceramics comprising a layered structure are designed and fabricated. By optimizing the distribution of the layered structure, a large maximum polarization and high applied electric field (>500 kV cm-1 ) can be achieved; these result in an ultrahigh recoverable energy storage density (≈7 J cm-3 ) and near ideal energy storage efficiency (≈95%). Furthermore, the energy storage performance without obvious deterioration over a broad range of operating frequencies (1-100 Hz), working temperatures (30-160 °C), and fatigue cycles (1-104 ). In addition, the prepared ceramics exhibit extremely high discharge energy density (4.52 J cm-3 ) and power density (405.50 MW cm-3 ). Here, the results demonstrate that the strategy of layered structure design and optimization is promising for enhancing the energy storage performance of lead-free ceramics.

14.
Small Methods ; 6(7): e2200308, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35661441

RESUMO

Herein, the obtained Cu0.5 Co0.5 -ZIF@Fe2 O3 @CC-150 heterojunction (termed as Cu1- x Cox -ZFC-150) showed high hydrogen and oxygen evolution reaction (HER and OER) activities with low overpotential small Tafel slope. When employed to be the bifunctional anode and cathode, they only needed a cell voltage of 1.62 V. The composite also exhibited excellent photocatalytic performance on CO2 evolution into CO and CH4 . The enhanced OER kinetics and Z-scheme charge transfer model for photocatalytic property have been discussed based on the experiments and density functional theory (DFT) analysis. The optimized phase interfaces, abundant active sites, optional oxygen vacancy, and adjusted Gibbs free energy were beneficial for the fast electron/ion transport enhancing the water splitting performance.

15.
Front Oncol ; 12: 858865, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35515131

RESUMO

Background: Antibody-drug conjugates (ADC), such as enfortumab vedotin (EV), sacituzumab govitecan (SG), and RC-48, have shown outstanding response rates to local advanced or metastatic urothelial carcinoma (UC). However, their corresponding target expression characteristics in UC and its histologic variants were unknown. Methods: We detected the expression of NECTIN-4, TROP-2, and HER2, which are the corresponding targets of ADCs EV, SG, and RC-48 in muscle-invasive UC through immunohistochemistry. Results: 161 consecutive samples from 2017 to 2021 of muscle-invasive UC and its histologic variants were obtained in Peking University First Hospital. Variant histology types included 72UC, 10 squamous carcinomas, 23 glandular carcinomas, 19 small cell carcinomas, 19 micropapillary variants, and 18 nested variants. NECTIN-4 expression was found to be 57/72 (79.2%), 10/10 (100%), 15/23 (65.2%), 4/19 (21.1%), 15/19 (78.9%), and 16/18 (88.9%) in conventional UC, squamous carcinoma, glandular carcinoma, small cell carcinoma, micropapillary, and nested variant, respectively, compared with 65/72 (90.3%), 8/10 (80.0%), 13/23 (56.5%), 3/19 (15.8%), 16/19 (84.2%), and 15/18 (83.3%) of TROP-2, and 26/72 (36.1%), 0, 5/23 (21.7%), 6/19 (31.6%), 5/19 (26.3%), and 7/18 (38.9%) of HER2.

16.
Materials (Basel) ; 15(5)2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35269183

RESUMO

Silver paste is widely used for low-temperature co-fired ceramic (LTCC) electrodes. In this work, a kind of LTCC silver paste for fine-line screen-printing was developed by considering the effect of the organic vehicle on rheological behavior and screen-printing properties. A step-by-step volatilization mode was applied to screen the mixed organic solvent of α-terpineol, 2-(2-butoxyethoxy) ethyl acetate (BCA) and dibutyl phthalate (DBP). The α-terpineol:BCA:DBP ratio of 5:2:3 is selected by considering the volatility, viscosity, and pseudoplasticity of the organic vehicle. Both viscosity and pseudoplasticity of shear-thinning increase with the increase of ethyl cellulose (EC) organic binder content. Three interval thixotropy test (3ITT) was conducted to discuss the thixotropy of silver paste. The minimum printing line width of 13.27 µm is obtained using silver paste with 10 wt% EC, confirming that the homemade paste has good printability.

17.
Chemosphere ; 296: 134043, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35189201

RESUMO

Pine needles are reliable passive bio-samplers that can be used to monitor atmospheric pollution levels. This study applied Pb isotope and multivariate statistical analyses to pine needles to examine the characteristics, sources, and ecological risks of atmospheric heavy metal pollution in the cities of the middle reaches of the Yangtze River, China. The heavy metal concentrations were higher than those measured in pine needles elsewhere in the world. They were higher in the metropolitan city (Wuhan) than in the medium-sized city (Yichang) and lowest in the natural setting (Shennongjia Forestry District), which is consistent with trends in urbanization and industrialization. Principal component analysis grouped the metals into three main sets associated with industrial activities and traffic sources. The Pb composition determined the main anthropogenic Pb sources were vehicle exhaust and industrial activities related to the lead-zinc ore, only a few of which were coal combustion. Three risk assessment indexes (pollution load index, ecological risk index, and bioconcentration factor) suggest that atmospheric heavy metals in the study area pose moderate environmental and health risks.


Assuntos
Metais Pesados , Pinus , Poluentes do Solo , China , Cidades , Monitoramento Ambiental , Poluição Ambiental/análise , Chumbo/análise , Metais Pesados/análise , Medição de Risco , Poluentes do Solo/análise
18.
Food Funct ; 13(5): 2534-2544, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35156977

RESUMO

Puerarin, a bioactive flavonoid found in the root of Pueraria lobata, is claimed to possess various medicinal properties. However, application of puerarin in functional foods is currently limited by its poor bioaccessibility. Existing delivery systems that guarantee puerarin bioaccessibility involve complex preparation steps and safety issues. Therefore, this study aimed to use meat protein and olive oil to efficiently and economically fabricate a food grade high internal phase Pickering emulsion (HIPPE) with co-encapsulated puerarin and ß-carotene to improve the bioaccessibility of puerarin. Moreover, the impact on lipid digestibility and puerarin bioaccessibility was verified using a simulated in vitro gastrointestinal tract. Co-encapsulating puerarin and ß-carotene in HIPPE increased puerarin bioaccessibility (85.17%) compared to that achieved with only puerarin in HIPPE (62.66%). This increased bioaccessibility may have been due to the personalized formulation and the exceptional structure of the HIPPE, which slowed down lipid digestion and inhibited puerarin degradation. A synergistic interaction occurred between ß-carotene and HIPPE to improve puerarin bioaccessibility. Our results have important implications for the design of effective delivery systems for encapsulation of puerarin and other bioactive components.


Assuntos
Digestão/efeitos dos fármacos , Alimento Funcional , Isoflavonas/farmacologia , Pueraria , Vasodilatadores/farmacologia , beta Caroteno/farmacologia , Animais , Disponibilidade Biológica , Sinergismo Farmacológico , Emulsões , Isoflavonas/química , Modelos Animais , Tamanho da Partícula , Raízes de Plantas , Suínos , Vasodilatadores/química , beta Caroteno/química
19.
J Colloid Interface Sci ; 608(Pt 3): 3192-3203, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34801238

RESUMO

CsPbBr3 quantum dots (CPB QDs) have great potential in photoreduction of CO2 to chemical fuels. However, the low charge transportation efficiency and chemical instability of CPB QDs presents a considerable challenge. Herein, we describe the electrostatic assemblies of negatively charged colloidal two dimensional (2D) Cu-Tetrakis(4-carboxyphenyl) porphyrins (Cu-TCPP) nanosheets and positively CPB QDs to construct the hydride heterojunction. The photogenerated electron migration from CPB QDs to Cu-TCPP nanosheets has been witnessed, providing the supply of long-lived electrons for the reduction of CO2 molecules adsorbed on Cu-TCPP matrix. As a direct result, The CPB@Cu-TCPP-x (x wt% of CPB QDs) photocatalysts exhibit significantly enhanced photocatalytic conversion of CO2, compared to the parent Cu-TCPP nanosheets or single CPB QDs. Especially, when with 20% CPB QDs, the heterostruture system achieves an evolution yield of 287.08 µmol g-1 in 4 h with highly CO selectivity (99%) under visible light irradiation, which is equivalent to a 3.87-fold improvement compared to the pristine CPB QDs. Meanwhile, the CH4 generation rate can be up to 3.25 µmol g-1. This optimized construction of heterostructure could provide a platform to funnel photoinduced electrons to the reaction center, which can both act as a crucial capture and the reaction actives of CO2.

20.
Nanomaterials (Basel) ; 11(12)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34947749

RESUMO

This paper reviews the material properties, fabrication and functionalities of liquid metal-based devices. In modern wireless communication technology, adaptability and versatility have become attractive features of any communication device. Compared with traditional conductors such as copper, the flow characteristics and lack of elastic limit of conductive fluids make them ideal alternatives for applications such as flexible circuits, soft electronic devices, wearable stretch sensors, and reconfigurable antennas. These fluid properties also allow for innovative manufacturing techniques such as 3-D printing, injecting or spraying conductive fluids on rigid/flexible substrates. Compared with traditional high-frequency switching methods, liquid metal (LM) can easily use micropumps or an electrochemically controlled capillary method to achieve reconfigurability of the device. The movement of LM over a large physical dimension enhances the reconfigurable state of the antenna, without depending on nonlinear materials or mechanisms. When LM is applied to wearable devices and sensors such as electronic skins (e-skins) and strain sensors, it consistently exhibits mechanical fatigue resistance and can maintain good electrical stability under a certain degree of stretching. When LM is used in microwave devices and paired with elastic linings such as polydimethylsiloxane (PDMS), the shape and size of the devices can be changed according to actual needs to meet the requirements of flexibility and a multistate frequency band. In this work, we discuss the material properties, fabrication and functionalities of LM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...