Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Pathog ; 139: 103891, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31783123

RESUMO

Previous study have shown that Talaromyces marneffei (T. marneffei) induced activation of autophagy. Therefore, we explore signaling pathway that regulates activation of autophagy by intracellular signaling mechanisms during T. marneffei infection. Further, we examine c-Jun N-terminal kinase 1 and 2 (JNK1/2) and p38 signaling pathways that regulate IL-1ß and IL-10 production and activation of autophagy during T. marneffei infection in human dendritic cells (DCs). We found that T. marneffei induced activation of JNK1/2 and p38 in human DCs. Furthermore, the inhibition of JNK1/2 and p38 increased activation of autophagy and decreased the replication of T. marneffei in T. marneffei-infected human DCs. Moreover, IL-1ß secretion in T. marneffei-infected human DCs was dependent on JNK1/2 and autophagy pathways, whereas IL-10 secretion was dependent on JNK1/2, p38 and autophagy pathways. These data suggest that JNK1/2 and p38 pathways play critical roles in activation of autophagy, the multiplication of T. marneffei and subsequent cytokine production during T. marneffei infection.


Assuntos
Autofagia , Células Dendríticas/metabolismo , Interleucina-10/biossíntese , Sistema de Sinalização das MAP Quinases , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Micoses/metabolismo , Micoses/microbiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Citocinas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Interleucina-1beta/biossíntese , Talaromyces
2.
Appl Opt ; 58(24): 6611-6617, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31503592

RESUMO

An electrically controlled arc-electrode liquid-crystal microlens array (AE-LCMLA), with tuning and swing focus, is proposed, which can be utilized to replace the traditional mechanically controlled microlenses and also cooperate with photosensitive arrays to solve the problems of measuring and further adjusting a strong distortion wavefront. The top patterned electrode of a single LC microlens is composed of three arc-electrodes distributed symmetrically around a central microhole for constructing the key controlling structures of the LC cavity in the AE-LCMLA. All the arc-electrodes are individually controlled, and then the focal spot of each microlens can be moved freely in a three-dimensional fashion including along the optical axial direction and over the focal plane by simply adjusting the driving signal voltage applied over each arc-electrode, independently. The featured performances of the AE-LCMLA in a wavelength range of ∼501-561 nm are the driving signal voltage being relatively low (less than ∼11 Vrms), the focal length tuning range being from ∼2.54 mm to ∼3.50 mm, the maximum focus swing distance being ∼52.92 µm, and the focus swing ratio K being ∼20‰.

3.
Oncol Lett ; 17(4): 3783-3789, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30881498

RESUMO

Resveratrol is one of the most promising phytoalexins for use as an anti-cancer agent, which is present in the skin of red grapes and berries. Resveratrol has been demonstrated to modulate a number of signalling pathways that are involved in carcinogenesis. In the present study, the function of resveratrol as a pro-apoptotic agent in colorectal cancer cell lines, including HCT116, CO115 and SW48, was investigated. The results revealed that resveratrol supressed cell viability. Additionally, resveratrol enhanced the expression of tumour protein p53 (p53) and p53 target genes, including Bcl2 associated X, apoptosis regulator and Bcl2 binding component 3 that have a pivotal role in p53-dependent apoptosis. Furthermore, treating cells with resveratrol upregulated SET domain containing lysine methyltransferase 7/9 (SET7/9) expression, which positively regulates p53 through its mono-methylation at lysine 372, compared with untreated cells. Furthermore, treating cells with resveratrol induced the expression of apoptotic markers including cleaved caspase-3 and poly (ADP-ribose) polymerases (PARP) compared with untreated cells. However, the genetic knockdown of SET7/9 by short hairpin RNA attenuated the resveratrol-driven overexpression of p53, cleaved caspase-3 and PARP. Collectively, these results reveal the molecular mechanisms by which resveratrol induces p53 stability in colon cancer that results in the activation of p53-mediated apoptosis.

4.
Micromachines (Basel) ; 10(2)2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30791375

RESUMO

A new dual-mode liquid-crystal (LC) micro-device constructed by incorporating a Fabry⁻Perot (FP) cavity and an arrayed LC micro-lens for performing simultaneous electrically adjusted filtering and zooming in infrared wavelength range is presented in this paper. The main micro-structure is a micro-cavity consisting of two parallel zinc selenide (ZnSe) substrates that are pre-coated with ~20-nm aluminum (Al) layers which served as their high-reflection films and electrodes. In particular, the top electrode of the device is patterned by 44 × 38 circular micro-holes of 120 µm diameter, which also means a 44 × 38 micro-lens array. The micro-cavity with a typical depth of ~12 µm is fully filled by LC materials. The experimental results show that the spectral component with needed frequency or wavelength can be selected effectively from incident micro-beams, and both the transmission spectrum and the point spread function can be adjusted simultaneously by simply varying the root-mean-square value of the signal voltage applied, so as to demonstrate a closely correlated feature of filtering and zooming. In addition, the maximum transmittance is already up to ~20% according the peak-to-valley value of the spectral transmittance curves, which exhibits nearly twice the increment compared with that of the ordinary LC-FP filtering without micro-lenses.

5.
Neuroreport ; 29(5): 385-392, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29406369

RESUMO

Tctex1 is an important element of the dynein motor unit in mammalian cells that helps move targets along microtubules and toward the centrosome for degradation. Here, we analyzed the role of Tctex1 in the α-synuclein autophagy-lysosome degradation pathway using Tctex1-siRNA in SH-SY5Y cells. Results showed that siRNA silencing of Tctex1 suppressed cellular viability and promoted cell apoptosis. Protein and mRNA expression of Tctex1 and dynein decreased after Tctex1 knockdown, whereas α-synuclein, LC3-II, and LAMP2 increased. Consistently, fluorescence intensity of Tctex1 was weaker in siRNA-Tctex1-transfected cells, and that of α-synuclein, LC3-II, and LAMP2 was increased. Tctex1 inhibition reduced cell viability and promoted apoptosis. These results show that Tctex1 plays an important role in α-synuclein autophagic degradation and in maintaining cellular homeostasis.


Assuntos
Autofagia/fisiologia , Sobrevivência Celular/fisiologia , Dineínas/metabolismo , Lisossomos/metabolismo , alfa-Sinucleína/metabolismo , Apoptose/fisiologia , Linhagem Celular Tumoral , Dineínas/genética , Inativação Gênica , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , RNA Interferente Pequeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...