Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867019

RESUMO

Continuous and in situ detection of biomarkers in biofluids (for example, sweat) can provide critical health data but is limited by biofluid accessibility. Here we report a sensor design that enables in situ detection of solid-state biomarkers ubiquitously present on human skin. We deploy an ionic-electronic bilayer hydrogel to facilitate the sequential dissolution, diffusion and electrochemical reaction of solid-state analytes. We demonstrate continuous monitoring of water-soluble analytes (for example, solid lactate) and water-insoluble analytes (for example, solid cholesterol) with ultralow detection limits of 0.51 and 0.26 nmol cm-2, respectively. Additionally, the bilayer hydrogel electrochemical interface reduces motion artefacts by a factor of three compared with conventional liquid-sensing electrochemical interfaces. In a clinical study, solid-state epidermal biomarkers measured by our stretchable wearable sensors showed a high correlation with biomarkers in human blood and dynamically correlated with physiological activities. These results present routes to universal platforms for biomarker monitoring without the need for biofluid acquisition.

2.
Nat Mater ; 22(11): 1352-1360, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37592030

RESUMO

Conventional pressure sensors rely on solid sensing elements. Instead, inspired by the air entrapment phenomenon on the surfaces of submerged lotus leaves, we designed a pressure sensor that uses the solid-liquid-liquid-gas multiphasic interfaces and the trapped elastic air layer to modulate capacitance changes with pressure at the interfaces. By creating an ultraslippery interface and structuring the electrodes at the nanoscale and microscale, we achieve near-friction-free contact line motion and thus near-ideal pressure-sensing performance. Using a closed-cell pillar array structure in synergy with the ultraslippery electrode surface, our sensor achieved outstanding linearity (R2 = 0.99944 ± 0.00015; nonlinearity, 1.49 ± 0.17%) while simultaneously possessing ultralow hysteresis (1.34 ± 0.20%) and very high sensitivity (79.1 ± 4.3 pF kPa-1). The sensor can operate under turbulent flow, in in vivo biological environments and during laparoscopic procedures. We anticipate that such a strategy will enable ultrasensitive and ultraprecise pressure monitoring in complex fluid environments with performance beyond the reach of the current state-of-the-art.

3.
Soft Matter ; 19(26): 4954-4963, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37341985

RESUMO

Inhomogeneous swelling of polymer films in liquid environments may find applications in soft actuators and sensors. Among them, fluoroelastomer based films bend up spontaneously once they are placed on an acetone-soaked filter paper. The stretchability and dielectric properties of a fluoroelastomer is attractive in the fields of soft actuators and sensors, making in-depth studies on and understanding of fluoroelastomer bending behaviors important. Here, we report an abnormal size-dependent bending phenomenon of rectangular fluoroelastomer films, which transform the bending direction from the long-side bending to the short-side bending as their length or width increases or the thickness decreases. By using finite element analysis and an analytical expression obtained using a bilayer model, we reveal the key role of gravity in determining the size-dependent bending behavior. In the bilayer model, an energy quantity is obtained to characterize the role of each material and geometrical parameters in determining the size-dependent bending behavior. We further construct phase diagrams to correlate the bending modes and the film sizes based on the finite element results, which are in good agreement with experimental results. These findings can be useful for the design of future swelling-based polymer actuators and sensors.

4.
Small ; 19(23): e2207634, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36732912

RESUMO

Recently, stretchable micro-supercapacitors (MSCs) that can be easily integrated into electronic devices have attracted research and industrial attentions. In this work, three-dimensional (3D) stretchable MSCs with an octet-truss electrode (OTE) design have been demonstrated by a rapid digital light processing (DLP) process. The 3D-printed electrode structure is beneficial for electrode-electrolyte interface formation and consequently increases the number of ions adsorbed on the electrode surface. The designed MSCs can achieve a high capacitance as ≈74.76 mF cm-3 under 1 mA cm-3 at room temperature even under a high mechanical deformation, and can achieve 19.53 mF cm-3 under 0.1 mA cm-3 at a low temperature (-30 °C). Moreover, finite element analysis (FEA) reveals the OTE structure provides 8 times more contact area per unit volume at the electrode-electrolyte interface compared to the traditional interdigital electrode (IDE). This work combines structural design and 3D printing techniques, which provides new insights into highly stretchable MSCs for next-generation electronic devices.

5.
Soft Robot ; 10(4): 737-748, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36827310

RESUMO

Soft robots have received much attention due to their impressive capabilities including high flexibility and inherent safety features for humans or unstructured environments compared with hard-bodied robots. Soft actuators are the crucial components of soft robotic systems. Soft robots require dexterous soft actuators to provide the desired deformation for different soft robotic applications. Most of the existing soft actuators have only one or two deformation modes. In this article, a new soft pneumatic actuator (SPA) is proposed taking inspiration from Kirigami. Kirigami-inspired cuts are applied to the actuator design, which enables the SPA to be equipped with multiple deformation modes. The proposed Kirigami-inspired soft pneumatic actuator (KiriSPA) is capable of producing bending motion, stretching motion, contraction motion, combined motion of bending and stretching, and combined motion of bending and contraction. The KiriSPA can be directly manufactured using 3D printers based on the fused deposition modeling technology. Finite element method is used to analyze and predict the deformation modes of the KiriSPA. We also investigated the step response, creep, hysteresis, actuation speed, stroke, workspace, stiffness, power density, and blocked force of the KiriSPA. Moreover, we demonstrated that KiriSPAs can be combined to expand the capabilities of various soft robotic systems including the soft robotic gripper for delicate object manipulation, the soft planar robotic manipulator for picking objects in the confined environment, the quadrupedal soft crawling robot, and the soft robot with the flipping locomotion.

6.
Small ; 19(9): e2205048, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36534830

RESUMO

Repositioning is a common guideline for the prevention of pressure injuries of bedridden or wheelchair patients. However, frequent repositioning could deteriorate the quality of patient's life and induce secondary injuries. This paper introduces a method for continuous multi-site monitoring of pressure and temperature distribution from strategically deployed sensor arrays at skin interfaces via battery-free, wireless ionic liquid pressure sensors. The wirelessly delivered power enables stable operation of the ionic liquid pressure sensor, which shows enhanced sensitivity, negligible hysteresis, high linearity and cyclic stability over relevant pressure range. The experimental investigations of the wireless devices, verified by numerical simulation of the key responses, support capabilities for real-time, continuous, long-term monitoring of the pressure and temperature distribution from multiple sensor arrays. Clinical trials on two hemiplegic patients confined on bed or wheelchair integrated with the system demonstrate the feasibility of sensor arrays for a decrease in pressure and temperature distribution under minimal repositioning.


Assuntos
Líquidos Iônicos , Cadeiras de Rodas , Humanos , Temperatura , Tecnologia sem Fio , Pele
7.
Polymers (Basel) ; 14(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36080617

RESUMO

This paper contributes to a new design of the three-dimensional printable robotic ball joints capable of creating the controllable stiffness linkage between two robot links through pneumatic actuation. The variable stiffness ball joint consists of a soft pneumatic elastomer actuator, a support platform, an inner ball and a socket. The ball joint structure, including the inner ball and the socket, is three-dimensionally printed using polyamide-12 (PA12) by selective laser sintering (SLS) technology as an integral mechanism without the requirement of assembly. The SLS technology can make the ball joint have the advantages of low weight, simple structure, easy to miniaturize and good MRI compatibility. The support platform is designed as a friction-based braking component to increase the stiffness of the ball joint while withstanding the external loads. The soft pneumatic elastomer actuator is responsible for providing the pushing force for the support platform, thereby modulating the frictional force between the inner ball, the socket and the support platform. The most remarkable feature of the proposed variable stiffness design is that the ball joint has 'zero' stiffness when no pressurized air is supplied. In the natural state, the inner ball can be freely rotated and twist inside the socket. The proposed ball joint can be quickly stiffened to lock the current position and orientation of the inner ball relative to the socket when the pressurized air is supplied to the soft pneumatic elastomer actuator. The relationship between the stiffness of the ball joint and the input air pressure is investigated in both rotating and twisting directions. The finite element analysis is conducted to optimize the design of the support platform. The stiffness tests are conducted, demonstrating that a significant stiffness enhancement, up to approximately 508.11 N·mm reaction torque in the rotational direction and 571.93 N·mm reaction torque in the twisting direction at the pressure of 400 kPa, can be obtained. Multiple ball joints can be easily assembled to form a variable stiffness structure, in which each ball joint has a relative position and an independent stiffness. Additionally, the degrees of freedom (DOF) of the ball joint can be readily restricted to build the single-DOF or two-DOFs variable stiffness joints for different robotic applications.

8.
Adv Mater ; 34(4): e2106212, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34738253

RESUMO

Memristors constitute a promising functional component for information storage and in-memory computing in flexible and stretchable electronics including wearable devices, prosthetics, and soft robotics. Despite tremendous efforts made to adapt conventional rigid memristors to flexible and stretchable scenarios, stretchable and mechanical-damage-endurable memristors, which are critical for maintaining reliable functions under unexpected mechanical attack, have never been achieved. Here, the development of stretchable memristors with mechanical damage endurance based on a discrete structure design is reported. The memristors possess large stretchability (40%) and excellent deformability (half-fold), and retain stable performances under dynamic stretching and releasing. It is shown that the memristors maintain reliable functions and preserve information after extreme mechanical damage, including puncture (up to 100 times) and serious tearing situations (fully diagonally cut). The structural strategy offers new opportunities for next-generation stretchable memristors with mechanical damage endurance, which is vital to achieve reliable functions for flexible and stretchable electronics even in extreme and highly dynamic environments.

9.
Adv Healthc Mater ; 10(17): e2100221, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34272931

RESUMO

Stretchable electronics have advanced rapidly and many applications require high repeatability and robustness under various mechanical deformations. It has been described here that how a highly stretchable and reliable conductor composite made from helical copper wires and a soft elastomer, named eHelix, can provide mechanically robust and strain-insensitive electronic conductivity for wearable devices. The reversibility of the mechanical behavior of the metal-elastomer system has been studied using finite element modeling methods. Optimal design parameters of such helical metal-elastomer structures are found. The scaling of multiple copper wires into such helical shapes to form a Multi-eHelix system is further shown. With the same elastomer volume, Multi-eHelix has more conductive paths and a higher current density than the single-eHelix. Integrations of these eHelix stretchable conductors with fabrics showed wearable displays that can survive machine-washes and hundreds of mechanical loading cycles. The integration of the eHelix developed by us with a wearable optical heart rate sensor enabled a wearable health monitoring system that can display measured heart rates on clothing. Furthermore, Multi-eHelix conductors are used to connect flexible printed circuit boards and piezoresistive sensors on a tactile sensing glove for the emerging sensorized prosthetics.


Assuntos
Elastômeros , Dispositivos Eletrônicos Vestíveis , Condutividade Elétrica , Frequência Cardíaca , Têxteis
10.
Proc Natl Acad Sci U S A ; 117(41): 25352-25359, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32989151

RESUMO

Electronic skins are essential for real-time health monitoring and tactile perception in robots. Although the use of soft elastomers and microstructures have improved the sensitivity and pressure-sensing range of tactile sensors, the intrinsic viscoelasticity of soft polymeric materials remains a long-standing challenge resulting in cyclic hysteresis. This causes sensor data variations between contact events that negatively impact the accuracy and reliability. Here, we introduce the Tactile Resistive Annularly Cracked E-Skin (TRACE) sensor to address the inherent trade-off between sensitivity and hysteresis in tactile sensors when using soft materials. We discovered that piezoresistive sensors made using an array of three-dimensional (3D) metallic annular cracks on polymeric microstructures possess high sensitivities (> 107 Ω â‹… kPa-1), low hysteresis (2.99 ± 1.37%) over a wide pressure range (0-20 kPa), and fast response (400 Hz). We demonstrate that TRACE sensors can accurately detect and measure the pulse wave velocity (PWV) when skin mounted. Moreover, we show that these tactile sensors when arrayed enabled fast reliable one-touch surface texture classification with neuromorphic encoding and deep learning algorithms.


Assuntos
Aprendizado de Máquina , Dispositivos Eletrônicos Vestíveis , Humanos , Ciência dos Materiais , Pressão , Análise de Onda de Pulso
11.
Mater Sci Eng C Mater Biol Appl ; 116: 111076, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32806320

RESUMO

The surface functionality of biomaterial plays a primary role in determining its application in biorecognition and drug delivery. In our work, three types of synthetic tailoring polymer nanospheres with hierarchical architecture were constructed to obtain functional polymer layer with disparate chemical motifs for protein adsorption via surface imprinting and grafting copolymerization. In this polymerization system, the structure stability of template protein bovine serum albumin (BSA) is well maintained within a certain range, which facilitated the accurate imprinting and precise identification. A comprehensive protocol for screening different functional layer is proposed through comparing the adsorption behavior, selectivity, identification and responsiveness to medium pH of three functional layers. Our study demonstrates that surface functionality greatly influences the adsorption capacity and selectivity of adsorption material. The functional layer with ionic liquid structure that could only provide multiple non-covalent binding sites is beneficial to the proteins aggregation and extraction, while the anti-nonspecific binding functional layer of biomaterial with zwitterionic structure for specific protein capture is promising to serve as a preferable antigen-antibody communication network, which shows great potential for protein recognition and separation. In summary, our proposed strategy provides a systematic selection criterion of biomaterials for effective application in biosensors.


Assuntos
Impressão Molecular , Nanosferas , Adsorção , Animais , Bovinos , Polímeros , Soroalbumina Bovina
12.
ACS Appl Mater Interfaces ; 12(5): 5601-5609, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31927972

RESUMO

Wearable epidermal sensors are of great importance to the next generation of personalized healthcare. The adhesion between the flexible sensor and skin surface is critical for obtaining accurate, reliable, and stable signals. Herein we present a facile approach to fabricate a microstructured, natural silk fibroin protein-based adhesive for achieving highly conformal, comfortable, adjustable, and biocompatible adhesion on the skin surface. The microstructured fibroin adhesive (MSFA) exhibits reliable and stable bonding force on skin surfaces, even under humid or wet conditions, and can be easily peeled off from the skin without causing significant pain. Such an MSFA can greatly improve the sensitivity and reusability of epidermal strain sensors because of its conformal and tunable adhesion on skin surfaces. The MFSA has a great potential to be applied as a functional adhesive for various epidermal electronic sensors in the era of personalized healthcare.


Assuntos
Fibroínas/química , Fenômenos Fisiológicos da Pele , Adesivos/química , Análise de Elementos Finitos , Humanos , Pele/metabolismo , Dispositivos Eletrônicos Vestíveis
13.
Nat Commun ; 10(1): 5293, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31757964

RESUMO

Spider silks show unique combinations of strength, toughness, extensibility, and energy absorption. To date, it has been difficult to obtain spider silk-like mechanical properties using non-protein approaches. Here, we report on an artificial spider silk produced by the water-evaporation-induced self-assembly of hydrogel fibre made from polyacrylic acid and silica nanoparticles. The artificial spider silk consists of hierarchical core-sheath structured hydrogel fibres, which are reinforced by ion doping and twist insertion. The fibre exhibits a tensile strength of 895 MPa and a stretchability of 44.3%, achieving mechanical properties comparable to spider silk. The material also presents a high toughness of 370 MJ m-3 and a damping capacity of 95%. The hydrogel fibre shows only ~1/9 of the impact force of cotton yarn with negligible rebound when used for impact reduction applications. This work opens an avenue towards the fabrication of artificial spider silk with applications in kinetic energy buffering and shock-absorbing.

14.
Materials (Basel) ; 12(9)2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31064101

RESUMO

We report on the dual mechanical and proximity sensing effect of soft-matter interdigitated (IDE) capacitor sensors, together with its modelling using finite element (FE) simulation to elucidate the sensing mechanism. The IDE capacitor is based on liquid-phase GaInSn alloy (Galinstan) embedded in a polydimethylsiloxane (PDMS) microfludics channel. The use of liquid-metal as a material for soft sensors allows theoretically infinite deformation without breaking electrical connections. The capacitance sensing is a result of E-field line disturbances from electrode deformation (mechanical effect), as well as floating electrodes in the form of human skin (proximity effect). Using the proximity effect, we show that spatial detection as large as 28 cm can be achieved. As a demonstration of a hybrid electronic system, we show that by integrating the IDE capacitors with a capacitance sensing chip, respiration rate due to a human's chest motion can be captured, showing potential in its implementation for wearable health-monitoring.

15.
Science ; 363(6430)2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30819934

RESUMO

Existing vital sign monitoring systems in the neonatal intensive care unit (NICU) require multiple wires connected to rigid sensors with strongly adherent interfaces to the skin. We introduce a pair of ultrathin, soft, skin-like electronic devices whose coordinated, wireless operation reproduces the functionality of these traditional technologies but bypasses their intrinsic limitations. The enabling advances in engineering science include designs that support wireless, battery-free operation; real-time, in-sensor data analytics; time-synchronized, continuous data streaming; soft mechanics and gentle adhesive interfaces to the skin; and compatibility with visual inspection and with medical imaging techniques used in the NICU. Preliminary studies on neonates admitted to operating NICUs demonstrate performance comparable to the most advanced clinical-standard monitoring systems.


Assuntos
Eletrônica/instrumentação , Terapia Intensiva Neonatal , Monitorização Fisiológica/instrumentação , Tecnologia sem Fio/instrumentação , Diagnóstico por Imagem , Desenho de Equipamento , Humanos , Recém-Nascido , Dispositivos Lab-On-A-Chip , Pele , Sinais Vitais
16.
ACS Appl Mater Interfaces ; 11(10): 10328-10336, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30785262

RESUMO

Four-dimensional (4D) printing that enables 3D printed structures to change configurations over time has gained great attention because of its exciting potential in various applications. Among all the 4D printing materials, shape memory polymers (SMPs) possess higher stiffness and faster response rate and therefore are considered as one of most promising materials for 4D printing. However, most of the SMP-based 4D printing materials are (meth)acrylate thermosets which have permanently cross-linked covalent networks and cannot be repaired if any damage occurs. To address the unrepairable nature of SMP-based 4D printing materials, this paper reports a double-network self-healing SMP (SH-SMP) system for high-resolution self-healing 4D printing. In the SH-SMP system, the semicrystalline linear polymer polycaprolactone (PCL) is incorporated into a methacrylate-based SMP system which has good compatibility with the digital light processing-based 3D printing technology and can be used to fabricate complex 4D printing structures with high resolution (up to 30 µm). The PCL linear polymer imparts the self-healing ability to the 4D printing structures, and the mechanical properties of a damaged structure can be recovered to more than 90% after adding more than 20 wt % of PCL into the SH-SMP system. We investigated the effects of PCL concentration on the thermomechanical behavior, viscosity, and the self-healing capability of the SH-SMP system and performed the computational fluid dynamics simulations to study the effect of SH-SMP solution's viscosity on the 3D printing process. Finally, we demonstrated the self-healing 4D printing application examples to show the merits of the SH-SMP system.

17.
RSC Adv ; 9(10): 5431-5437, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35515904

RESUMO

Vitrimers are a new class of thermosetting polymers that can be thermally processed through bond exchange reactions (BERs) without losing network integrity. In engineering applications, the tunability of their thermomechanical properties is highly desirable to meet the requirements of different working conditions. Here, we report a simple composite-based strategy that avoids complex chemistry to prepare vitrimer blends with tunable thermomechanical properties by virtue of the good weldability of base vitrimers. Effects of processing parameters (such as temperature and time) on the properties of recycled vitrimer blends are experimentally investigated. A computational model that accounts for the random distribution of component vitrimer particles is developed to predict the thermomechanical properties of the recycled vitrimer blends with various compositions. Good agreement is achieved between theoretical prediction and experiment. Parametric studies are further conducted by employing the computational model to explore the designability and provide some basic principles to guide the design of recycled vitrimer blends. Reasonable recyclability of the vitrimer blends is verified by multiple generations of recycling experiments.

18.
Adv Mater ; 30(21): e1800129, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29603437

RESUMO

Soft and stretchable electronic devices are important in wearable and implantable applications because of the high skin conformability. Due to the natural biocompatibility and biodegradability, silk protein is one of the ideal platforms for wearable electronic devices. However, the realization of skin-conformable electronic devices based on silk has been limited by the mechanical mismatch with skin, and the difficulty in integrating stretchable electronics. Here, silk protein is used as the substrate for soft and stretchable on-skin electronics. The original high Young's modulus (5-12 GPa) and low stretchability (<20%) are tuned into 0.1-2 MPa and > 400%, respectively. This plasticization is realized by the addition of CaCl2 and ambient hydration, whose mechanism is further investigated by molecular dynamics simulations. Moreover, highly stretchable (>100%) electrodes are obtained by the thin-film metallization and the formation of wrinkled structures after ambient hydration. Finally, the plasticized silk electrodes, with the high electrical performance and skin conformability, achieve on-skin electrophysiological recording comparable to that by commercial gel electrodes. The proposed skin-conformable electronics based on biomaterials will pave the way for the harmonized integration of electronics into human.


Assuntos
Seda , Materiais Biocompatíveis , Módulo de Elasticidade , Eletrodos , Humanos , Pele
19.
Adv Mater ; 30(12): e1706589, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29380896

RESUMO

Stretchable strain sensors play a pivotal role in wearable devices, soft robotics, and Internet-of-Things, yet these viable applications, which require subtle strain detection under various strain, are often limited by low sensitivity. This inadequate sensitivity stems from the Poisson effect in conventional strain sensors, where stretched elastomer substrates expand in the longitudinal direction but compress transversely. In stretchable strain sensors, expansion separates the active materials and contributes to the sensitivity, while Poisson compression squeezes active materials together, and thus intrinsically limits the sensitivity. Alternatively, auxetic mechanical metamaterials undergo 2D expansion in both directions, due to their negative structural Poisson's ratio. Herein, it is demonstrated that such auxetic metamaterials can be incorporated into stretchable strain sensors to significantly enhance the sensitivity. Compared to conventional sensors, the sensitivity is greatly elevated with a 24-fold improvement. This sensitivity enhancement is due to the synergistic effect of reduced structural Poisson's ratio and strain concentration. Furthermore, microcracks are elongated as an underlying mechanism, verified by both experiments and numerical simulations. This strategy of employing auxetic metamaterials can be further applied to other stretchable strain sensors with different constituent materials. Moreover, it paves the way for utilizing mechanical metamaterials into a broader library of stretchable electronics.

20.
Nat Commun ; 8: 15894, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28635956

RESUMO

Low modulus, compliant systems of sensors, circuits and radios designed to intimately interface with the soft tissues of the human body are of growing interest, due to their emerging applications in continuous, clinical-quality health monitors and advanced, bioelectronic therapeutics. Although recent research establishes various materials and mechanics concepts for such technologies, all existing approaches involve simple, two-dimensional (2D) layouts in the constituent micro-components and interconnects. Here we introduce concepts in three-dimensional (3D) architectures that bypass important engineering constraints and performance limitations set by traditional, 2D designs. Specifically, open-mesh, 3D interconnect networks of helical microcoils formed by deterministic compressive buckling establish the basis for systems that can offer exceptional low modulus, elastic mechanics, in compact geometries, with active components and sophisticated levels of functionality. Coupled mechanical and electrical design approaches enable layout optimization, assembly processes and encapsulation schemes to yield 3D configurations that satisfy requirements in demanding, complex systems, such as wireless, skin-compatible electronic sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...