Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Environ Manage ; 362: 121335, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833934

RESUMO

Transitional features of desert environments partially determine the risks associated with ecosystems. Influenced by climate change and human activities, the variability and uncertainty of desertification levels and ecological risks in the Qinghai Area of Qilian Mountain National Park (QMNPQA) has become increasingly prominent. As a critical ecological barrier in northwest China, monitoring desertification dynamics and ecological risks is crucial for maintaining ecosystem stability. This study identifies the optimal monitoring model from four constructed desertification monitoring models and analyzes spatiotemporal changes in desertification. The spatial and temporal changes in ecological risks and their primary driving factors were analyzed using methods such as raster overlay calculation, geographic detector, cloud model, and trend analysis. The main conclusions are as follows: The desertification feature spatial model based on GNDVI-Albedo demonstrates better applicability in the study area, with an inversion accuracy of 81.24%. The levels of desertification and ecological risks in QMNPQA exhibit significant spatial heterogeneity, with a gradual decrease observed from northwest to southeast. From 2000 to 2020, there is an overall decreasing trend in desertification levels and ecological risks, with the decreasing trend area accounting for 89.82% and 85.71% respectively, mainly concentrated in the southeastern and northwestern parts of the study area. The proportion of areas with increasing trends is 4.49% and 7.05% respectively, scattered in patches in the central and southern edge areas. Surface temperature (ST), Digital Elevation Map (DEM), and Green normalized difference vegetation index (GNDVI) are the most influential factors determining the spatial distribution of ecological risks in QMNPQA. The effects of management and climatic factors on ecological risks demonstrate a significant antagonistic effect, highlighting the positive contributions of human activities in mitigating the driving effects of climate change on ecological risks. The research results can provide reference for desertification prevention and ecological quality improvement in QMNPQA.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Atividades Humanas , Parques Recreativos , China , Humanos , Ecologia
2.
Carbon Balance Manag ; 19(1): 19, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884686

RESUMO

The changes and influencing factors of soil inorganic carbon (SIC) and organic carbon (SOC) on precipitation gradients are crucial for predicting and evaluating carbon storage changes at the regional scale. However, people's understanding of the distribution characteristics of SOC and SIC reserves on regional precipitation gradients is insufficient, and the main environmental variables that affect SOC and SIC changes are also not well understood. Therefore, this study focuses on the Alxa region and selects five regions covered by three typical desert vegetation types, Zygophyllum xanthoxylon (ZX), Nitraria tangutorum (NT), and Reaumuria songarica (RS), along the climate transect where precipitation gradually increases. The study analyzes and discusses the variation characteristics of SOC and SIC under different vegetation and precipitation conditions. The results indicate that both SOC and SIC increase with the increase of precipitation, and the increase in SOC is greater with the increase of precipitation. The average SOC content in the 0-300cm profile is NT (4.13 g kg-1) > RS (3.61 g kg-1) > ZX (3.57 g kg-1); The average value of SIC content is: RS (5.78 g kg-1) > NT (5.11 g kg-1) > ZX (5.02 g kg-1). Overall, the multi-annual average precipitation (MAP) in the Alxa region is the most important environmental factor affecting SIC and SOC.

3.
Int J Biol Macromol ; 271(Pt 1): 132544, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38782318

RESUMO

The lobed leaves of rapeseed (Brassica napus L.) offer significant advantages in dense planting, leading to increased yield. Although AtWIP2, a C2H2 zinc finger transcription factor, acts as a regulator of leaf development in Arabidopsis thaliana, the function and regulatory mechanisms of BnaWIP2 in B. napus remain unclear. Here, constitutive expression of the BnaC06.WIP2 paralog, predominantly expressed in leaf serrations, produced lobed leaves in both A. thaliana and B. napus. We demonstrated that BnaC06.WIP2 directly repressed the expression of BnaA01.TCP4, BnaA03.TCP4, and BnaC03.TCP4 and indirectly inhibited the expression of BnaA05.BOP1 and BnaC02.AS2 to promote leaf lobe formation. On the other hand, we discovered that BnaC06.WIP2 modulated the levels of endogenous gibberellin, cytokinin, and auxin, and controlled the auxin distribution in B. napus leaves, thus accelerating leaf lobe formation. Meanwhile, we revealed that BnaA09.STM physically interacted with BnaC06.WIP2, and ectopic expression of BnaA09.STM generated smaller and lobed leaves in B. napus. Furthermore, we found that BnaC06.WIP2 and BnaA09.STM synergistically promoted leaf lobe formation through forming transcriptional regulatory module. Collectively, our findings not only facilitate in-depth understanding of the regulatory mechanisms underlying lobed leaf formation, but also are helpful for guiding high-density breeding practices through improving leaf morphology in B. napus.


Assuntos
Brassica napus , Regulação da Expressão Gênica de Plantas , Folhas de Planta , Fatores de Transcrição , Brassica napus/genética , Brassica napus/metabolismo , Brassica napus/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas Geneticamente Modificadas
4.
ACS Appl Mater Interfaces ; 16(20): 26932-26942, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717983

RESUMO

Current electrically heated fabrics provide heat in cold climates, suffer from abundant wasted radiant heat energy to the external environment, and are prone to damage by water. Thus, constructing energy-efficient and superhydrophobic conductive fabrics is in high demand. Therefore, we propose an effective and facile methodology to prepare a superhydrophobic, highly conductive, and trilayered fabric with a connected carbon nanotube (CNT) layer and a titanium dioxide (TiO2) nanoparticle heat-reflecting layer. We construct polyamide/fluorinated polyurethane (PA/FPU) nanofibrous membranes via first electrospinning, then performing blade-coating with the polyurethane (PU) solution with CNTs, and finally fabricating FPU/TiO2 nanoparticles via electrospraying. This strategy causes CNTs to be connected to form a conductive layer and enables TiO2 nanoparticles to be bound together to form a porous, heat-reflecting layer. As a consequence, the as-prepared membranes demonstrate high conductivity with an electrical conductivity of 63 S/m, exhibit rapid electric-heating capacity, and exhibit energy-efficient asymmetrical heating behavior, i.e., the heating temperature of the PA/FPU nanofibrous layer reaches more than 83 °C within 90 s at 24 V, while the heating temperature of the FPU/TiO2 layer only reaches 53 °C, as well as prominent superhydrophobicity with a water contact angle of 156°, indicating promising utility for the next generation of electrical heating textiles.

5.
Plant Physiol ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687890

RESUMO

Seed germination is a critical checkpoint for plant growth under unfavorable environmental conditions. In Arabidopsis (Arabidopsis thaliana), the abscisic acid (ABA) and gibberellic acid (GA) signaling pathways play important roles in modulating seed germination. However, the molecular links between salinity stress and ABA/GA signaling are not well understood. Herein, we showed that the expression of DIVARICATA1 (DIV1), which encodes a MYB-like transcription factor, was induced by GA and repressed by ABA, salinity, and osmotic stress in germinating seeds. DIV1 positively regulated seed germination in response to salinity stress by directly regulating the expression of DELAY OF GERMINATION 1-LIKE 3 (DOGL3) and GA-STIMULATED ARABIDOPSIS 4 (GASA4) and indirectly regulating the expression of several germination-associated genes. Moreover, NUCLEAR FACTOR-YC9 (NF-YC9) directly repressed the expression of DIV1 in germinating seeds in response to salinity stress. These results help reveal the function of the NF-YC9-DIV1 module and provide insights into the regulation of ABA and GA signaling in response to salinity stress during seed germination in Arabidopsis.

6.
Geroscience ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38514520

RESUMO

Behavioral evidence showed decreased cognitive flexibility in older adults. However, task-based network mechanisms of cognitive flexibility in aging (CFA) remain unclear. Here, we provided the first task-state network evidence that CFA was associated with inadequate preparation for switching trials by revealing age-related changes in functional integration. We examined functional integration in a letter-number switch task that distinguished between the cue and target stages. Both young and older adults showed decreased functional integration from the cue stage to the target stage, indicating that control-related processes were executed as the task progressed. However, compared to young adults, older adults showed less cue-to-target reduction in functional integration, which was primarily driven by higher network integration in the target stage. Moreover, less cue-to-target reductions were correlated with age-related decreases in task performance in the switch task. To sum up, compared to young adults, older adults pre-executed less control-related processes in the cue stage and more control-related processes in the target stage. Therefore, the decline in cognitive flexibility in older adults was associated with inadequate preparation for the impending demands of cognitive switching. This study offered novel insights into network mechanisms underlying CFA. Furthermore, we highlighted that training the function of brain networks, in conjunction with providing more preparation time for older adults, may be beneficial to their cognitive flexibility.

7.
ACS Appl Mater Interfaces ; 16(14): 18202-18212, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38551998

RESUMO

Textile-based sweat sensors display great potential to enhance wearable comfort and health monitoring; however, their widespread application is severely hindered by the intricate manufacturing process and electrochemical characteristics. To address this challenge, we combined both impregnation coating technology and conjugated electrospinning technology to develop an electro-assisted impregnation core-spinning technology (EAICST), which enables us to simply construct a sheath-core electrochemical sensing yarn (TPFV/CPP yarn) via coating PEDOT:PSS-coated carbon fibers (CPP) with polyurethane (TPU)/polyacrylonitrile (PAN)/poloxamer (F127)/valinomycin as shell. The TPFV/CPP yarn was sewn into the fabric and integrated with a sensor to achieve a detachable feature and efficiently monitor K+ levels in sweat. By introducing EAICST, a speed of 10 m/h can be realized in the continuous preparation of the TPFV/CPP yarn, while the interconnected pores in the yarn sheath enable it to quickly capture and diffuse sweat. Besides, the sensor exhibited excellent sensitivity (54.26 mV/decade), fast response (1.7 s), anti-interference, and long-term stability (5000 s or more). Especially, it also possesses favorable washability and wear resistance properties. Taken together, this study provides a crucial technical foundation for the development of advanced wearable devices designed for sweat analysis.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Suor/química , Poliuretanos/química , Fibra de Carbono , Têxteis
8.
Pathol Res Pract ; 254: 155154, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38286054

RESUMO

The serine/threonine kinase (STK) 33 plays a key role in cancer cell proliferation and metastasis. Abnormal STK33 expression is closely related to malignancy of numerous cancers. This study suggests the important role of STK33 in the pathogenesis and metastatic progression of esophageal squamous cell carcinoma (ESCC). STK33 expression in human ESCC tissues was detected by immunohistochemical technique. Further, we analyzed the relationship between STK33 and clinical and pathological factors as well as the prognosis of patients. ECa109 cell line was cultured and transfected with STK33-RNAi lentiviral vector to perform Hochest33342 & PI and metastasis experiments. The TCGA database was used to analyze the STK33 expression level in ESCC. All statistical analyses were performed in SPSS 23.0 software. Differences with P < 0.05 were considered statistically significant. In human ESCC specimens, STK33 was overexpressed and associated with poor prognosis. Silencing STK33 expression suppressed ESCC proliferation, migration, invasion, and tumor growth. STK33 also mediated angiogenesis, TGFß, and inflammatory response in ESCC. Mechanistic investigations revealed that STK33 regulates ESCC through multiple complex pathways. Dysregulated STK33 signaling promotes ESCC growth and progression. Thus, our findings identified STK33 as a candidate treatment target that improves ESCC therapy.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Esofágicas/patologia , Linhagem Celular Tumoral , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proliferação de Células/genética , Serina/metabolismo , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica/genética
9.
Appl Biochem Biotechnol ; 196(1): 233-244, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37115387

RESUMO

Osteosarcoma (OS) is a high-grade intraosseous malignancy. Twenty to thirty percent of OS patients react poorly to standard therapy with a combination of surgical resection and chemotherapy. It is necessary to find molecules that play an important role in this. This study explored the role of TRIM4 in OS chemotherapy sensitivity and malignant progression. The expression of TRIM4 in OS tissues and cells was examined by RT-qPCR, immunohistochemical staining, and western blot. Specific siRNA was transfected into U2-OS and SAOS2 cells to target TRIM4. Cell biological behavior was examined by CCK-8, Transwell, and flow cytometry experiments. Cisplatin-resistant SAOS2 (SAOS2-Cis-R) cells were established, and the effect of TRIM4 expression on the cisplatin response of SAOS2 cells was tested. Knockdown of TRIM4 significantly inhibited the proliferation, migration, and invasion of U2-OS and SAOS2 cells and induced apoptosis. TRIM4 expression was significantly higher in chemotherapy-resistant OS tissues compared to chemotherapy-sensitive OS tissues. Furthermore, the expression of TRIM4 in SAOS2-Cis-R cells was significantly increased compared to parental SAOS2 cells. Moreover, overexpression of TRIM4 enhanced cisplatin resistance in parental SAOS2 cells, while the downregulation of TRIM4 expression enhanced cisplatin sensitivity of SAOS2-Cis-R cells. High TRIM4 expression might be associated with malignant progression and poor response to chemotherapy response of OS. Targeting TRIM4 may be beneficial for OS treatment or combination therapy.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Linhagem Celular Tumoral , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Apoptose , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Proliferação de Células
10.
J Microbiol Biotechnol ; 34(1): 192-197, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-37957116

RESUMO

Refractory infections, such as hospital-acquired pneumonia, can be better diagnosed with the assistance of precise methicillin-resistant Staphylococcus aureus (MRSA) testing. However, traditional methods necessitate high-tech tools, rigorous temperature cycling, and the extraction of genetic material from MRSA cells. Herein, we propose a sensitive, specific, and extraction-free strategy for MRSA detection by integrating allosteric probe-based target recognition and exonuclease-III (Exo-III)-enhanced color reaction. The penicillin-binding protein 2a (PBP2a) aptamer in the allosteric probe binds with MRSA to convert protein signals to nucleic acid signals. This is followed by the DNA polymerase-assisted target recycle and the production of numerous single-strand DNA (ssDNA) chains which bind with silver ion (Ag+) aptamer to form a blunt terminus that can be identified by Exo-III. As a result, the Ag+ aptamer pre-coupled to magnetic nanoparticles is digested. After magnetic separation, the Ag+ in liquid supernatant catalyzes 3,3',5,5'-tetramethylbenzidine (TMB) for a color reaction. In addition, a concentration of 54 cfu/mL is predicted to be the lowest detectable value. Based on this, our assay has a wide linear detection range, covering 5 orders of magnitude and demonstrating a high specificity, which allows it to accurately distinguish the target MRSA from other microorganisms.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus Resistente à Meticilina/genética , Proteínas de Ligação às Penicilinas/genética , Oligonucleotídeos/metabolismo
11.
J Integr Plant Biol ; 66(1): 121-142, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38146678

RESUMO

Transcriptional regulation is essential for balancing multiple metabolic pathways that influence oil accumulation in seeds. Thus far, the transcriptional regulatory mechanisms that govern seed oil accumulation remain largely unknown. Here, we identified the transcriptional regulatory network composed of MADS-box transcription factors SEEDSTICK (STK) and SEPALLATA3 (SEP3), which bridges several key genes to regulate oil accumulation in seeds. We found that STK, highly expressed in the developing embryo, positively regulates seed oil accumulation in Arabidopsis (Arabidopsis thaliana). Furthermore, we discovered that SEP3 physically interacts with STK in vivo and in vitro. Seed oil content is increased by the SEP3 mutation, while it is decreased by SEP3 overexpression. The chromatin immunoprecipitation, electrophoretic mobility shift assay, and transient dual-luciferase reporter assays showed that STK positively regulates seed oil accumulation by directly repressing the expression of MYB5, SEP3, and SEED FATTY ACID REDUCER 4 (SFAR4). Moreover, genetic and molecular analyses demonstrated that STK and SEP3 antagonistically regulate seed oil production and that SEP3 weakens the binding ability of STK to MYB5, SEP3, and SFAR4. Additionally, we demonstrated that TRANSPARENT TESTA 8 (TT8) and ACYL-ACYL CARRIER PROTEIN DESATURASE 3 (AAD3) are direct targets of MYB5 during seed oil accumulation in Arabidopsis. Together, our findings provide the transcriptional regulatory network antagonistically orchestrated by STK and SEP3, which fine tunes oil accumulation in seeds.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sementes/genética , Sementes/metabolismo , Óleos de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo
12.
Genes (Basel) ; 14(12)2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38137039

RESUMO

At the moment, drought, salinity, and low-temperature stress are ubiquitous environmental issues. In arid regions including Xinjiang and Inner Mongolia and other areas worldwide, the area of tree plantations appears to be rising, triggering tree growth. Water is a vital resource in the agricultural systems of countries impacted by aridity and salinity. Worldwide efforts to reduce quantitative yield losses on Populus euphratica by adapting tree plant production to unfavorable environmental conditions have been made in response to the responsiveness of the increasing control of water stress. Although there has been much advancement in identifying the genes that resist abiotic stresses, little is known about how plants such as P. euphratica deal with numerous abiotic stresses. P. euphratica is a varied riparian plant that can tolerate drought, salinity, low temperatures, and climate change, and has a variety of water stress adaptability abilities. To conduct this review, we gathered all available information throughout the Web of Science, the Chinese National Knowledge Infrastructure, and the National Center for Biotechnology Information on the impact of abiotic stress on the molecular mechanism and evolution of gene families at the transcription level. The data demonstrated that P. euphratica might gradually adapt its stomatal aperture, photosynthesis, antioxidant activities, xylem architecture, and hydraulic conductivity to endure extreme drought and salt stress. Our analyses will give readers an understanding of how to manage a gene family in desert trees and the influence of abiotic stresses on the productivity of tree plants. They will also give readers the knowledge necessary to improve biotechnology-based tree plant stress tolerance for sustaining yield and quality trees in China's arid regions.


Assuntos
Populus , Populus/genética , Desidratação , Estresse Fisiológico/genética , Árvores , China
13.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38003239

RESUMO

Anthocyanins are widespread water-soluble pigments in the plant kingdom. Anthocyanin accumulation is activated by the MYB-bHLH-WD40 (MBW) protein complex. In Arabidopsis, the R2R3-MYB transcription factor PAP1 activates anthocyanin biosynthesis. While prior research primarily focused on seedlings, seeds received limited attention. This study explores PAP1's genome-wide target genes in anthocyanin biosynthesis in seeds. Our findings confirm that PAP1 is a positive regulator of anthocyanin biosynthesis in Arabidopsis seeds. PAP1 significantly increased anthocyanin content in developing and mature seeds in Arabidopsis. Transcriptome analysis at 12 days after pollination reveals the upregulation of numerous genes involved in anthocyanin accumulation in 35S:PAP1 developing seeds. Chromatin immunoprecipitation and dual luciferase reporter assays demonstrate PAP1's direct promotion of ten key genes and indirect upregulation of TT8, TTG1, and eight key genes during seed maturation, thus enhancing seed anthocyanin accumulation. These findings enhance our understanding of PAP1's novel role in regulating anthocyanin accumulation in Arabidopsis seeds.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Antocianinas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sementes/genética , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas
14.
Plants (Basel) ; 12(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37687347

RESUMO

Flax (Linum usitatissimum L.), as an important oil-producing crop, is widely distributed throughout the world, and its seeds are rich in polyunsaturated fatty acids (FAs). Previous studies have revealed that Arabidopsis thaliana ACETYL-CoA CARBOXYLASE (AtACCase) is vital for FA biosynthesis. However, the functions of L. usitatissimum AccD (LuAccD) on FA accumulation and seed germination remain unclear. In the present study, we cloned the LuAccD coding sequence from the flax cultivar 'Longya 10', identified conserved protein domains, and performed a phylogenetic analysis to elucidate its relationship with homologs from a range of plant species. Ectopic expression of LuAccD in A. thaliana wild-type background enhanced seed FA accumulation without altering seed morphological characteristics, including seed size, 1000-seed weight, and seed coat color. Consistently, the expression of key genes involved in FA biosynthesis was greatly up-regulated in the developing seeds of LuAccD overexpression lines. Additionally, we demonstrated that LuAccD acts as a positive regulator of salt and mannitol tolerance during seed germination in A. thaliana. These results provide important insights into the functions of LuAccD, which facilitates the oil quantity and abiotic stress tolerance of oil-producing crops through genetic manipulation.

15.
Front Oncol ; 13: 892393, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645426

RESUMO

Objectives: To identify combined clinical, radiomic, and delta-radiomic features in metastatic gastroesophageal adenocarcinomas (GEAs) that may predict survival outcomes. Methods: A total of 166 patients with metastatic GEAs on palliative chemotherapy with baseline and treatment/follow-up (8-12 weeks) contrast-enhanced CT were retrospectively identified. Demographic and clinical data were collected. Three-dimensional whole-lesional radiomic analysis was performed on the treatment/follow-up scans. "Delta" radiomic features were calculated based on the change in radiomic parameters compared to the baseline. The univariable analysis (UVA) Cox proportional hazards model was used to select clinical variables predictive of overall survival (OS) and progression-free survival (PFS) (p-value <0.05). The radiomic and "delta" features were then assessed in a multivariable analysis (MVA) Cox model in combination with clinical features identified on UVA. Features with a p-value <0.01 in the MVA models were selected to assess their pairwise correlation. Only non-highly correlated features (Pearson's correlation coefficient <0.7) were included in the final model. Leave-one-out cross-validation method was used, and the 1-year area under the receiver operating characteristic curve (AUC) was calculated for PFS and OS. Results: Of the 166 patients (median age of 59.8 years), 114 (69%) were male, 139 (84%) were non-Asian, and 147 (89%) had an Eastern Cooperative Oncology Group (ECOG) performance status of 0-1. The median PFS and OS on treatment were 3.6 months (95% CI 2.86, 4.63) and 9 months (95% CI 7.49, 11.04), respectively. On UVA, the number of chemotherapy cycles and number of lesions at the end of treatment were associated with both PFS and OS (p < 0.001). ECOG status was associated with OS (p = 0.0063), but not PFS (p = 0.054). Of the delta-radiomic features, delta conventional HUmin, delta gray-level zone length matrix (GLZLM) GLNU, and delta GLZLM LGZE were incorporated into the model for PFS, and delta shape compacity was incorporated in the model for OS. Of the treatment/follow-up radiomic features, shape compacity and neighborhood gray-level dependence matrix (NGLDM) contrast were used in both models. The combined 1-year AUC (Kaplan-Meier estimator) was 0.82 and 0.81 for PFS and OS, respectively. Conclusions: A combination of clinical, radiomics, and delta-radiomic features may predict PFS and OS in GEAs with reasonable accuracy.

16.
Front Plant Sci ; 14: 1099217, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36760638

RESUMO

Afforestation as an effective measure for wind and sand control has achieved remarkable results in northern China, and has also greatly changed the land use and vegetation characteristics of the region. It is important to study the spatial and temporal dynamics of soil water content (SWC) in different afforestation years and its temporal stability to understand the dynamic characteristics of SWC during afforestation. In order to reveal the spatiotemporal dynamic characteristics of SWC in desert area Haloxylon ammodendron (HA)plantations, in this study, five restorative-aged HA plantations in desert areas were selected and their SWC was measured in stratified layers for the 0-400 cm soil profile; we also analyzed the spatiotemporal dynamics and temporal stability of the SWC. The results showed that the SWC of HA plantations decreased with the increase in planting age in the measurement period, and the SWC of deep layers increased by more than that of shallow layers with planting age. Spearman's rank correlation coefficients for SWC of 0-400 cm in both 5- and 11-year-old HA plantations reached above 0.8 and were highly significantly correlated; the temporal stability of SWC tends to increase as the depth of the soil layer deepens. In contrast, the temporal stability of SWC in deeper layers (200-400 cm) of 22-, 34- and 46-year-old stands showed a decreasing trend with depth. Based on the relative difference analysis, representative sampling points can be selected to monitor the regional average SWC, but for older HA plantations, the uncertainty factor of stand age should be considered in the regional moisture simulation. This study verified that it is feasible to simulate large-scale SWC in fewer observations for HA plantations younger than 11 years old, while large errors exist for older stands, especially for deeper soils. This will help soil moisture management in HA plantations in arid desert areas.

18.
Plant Physiol ; 192(1): 488-503, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36542529

RESUMO

Leaf senescence is the final stage of leaf development and is affected by various exogenous and endogenous factors. Transcriptional regulation is essential for leaf senescence, however, the underlying molecular mechanisms remain largely unclear. In this study, we report that the transcription factor MYB59, which was predominantly expressed in early senescent rosette leaves, negatively regulates leaf senescence in Arabidopsis (Arabidopsis thaliana). RNA sequencing revealed a large number of differentially expressed genes involved in several senescence-related biological processes in myb59-1 rosette leaves. Chromatin immunoprecipitation and transient dual-luciferase reporter assays demonstrated that MYB59 directly repressed the expression of SENESCENCE ASSOCIATED GENE 18 and indirectly inhibited the expression of several other senescence-associated genes to delay leaf senescence. Moreover, MYB59 was induced by salicylic acid (SA) and jasmonic acid (JA). MYB59 inhibited SA production by directly repressing the expression of ISOCHORISMATE SYNTHASE 1 and PHENYLALANINE AMMONIA-LYASE 2 and restrained JA biosynthesis by directly suppressing the expression of LIPOXYGENASE 2, thus forming two negative feedback regulatory loops with SA and JA and ultimately delaying leaf senescence. These results help us understand the novel function of MYB59 and provide insights into the regulatory network controlling leaf senescence in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Senescência Vegetal , Ácido Salicílico/metabolismo , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
19.
J Plant Physiol ; 280: 153893, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36502559

RESUMO

Flax (Linum usitatissimum) is an important oil crop in arid and semi-arid regions of North and Northwest China, and its seeds are rich in nutritious storage reserves, such as polyunsaturated fatty acids (FAs) and proteins. However, the regulatory networks that control the accumulation of seed storage reserves in flax are still largely unknown. In this study, we found that LuABI3-1 and LuABI3-2 homologs from the flax cultivar 'Longya 10' play important roles in regulating the accumulation of seed storage reserves in Arabidopsis thaliana. The results of subcellular localization and transcriptional activity assays showed that both LuABI3-1 and LuABI3-2 function as transcription factors. Overexpression of either LuABI3-1 or LuABI3-2 resulted in the significant increase in the contents of total seed FAs and storage proteins, but did not alter other key agronomic traits in A. thaliana. Accordingly, the expression of key genes involved in the biosynthesis of FAs and storage proteins was also greatly up-regulated in the developing seeds of LuABI3-1-overexpression lines. Additionally, both LuABI3-1 and LuABI3-2 enhanced the tolerance to the high salt and mannitol stresses during seed germination and seedling establishment in A. thaliana. These results increase our understanding of the LuABI3 regulatory functions and provide promising targets for genetic manipulation of L. usitatissimum to innovate the germplasm resources and cultivate high yield and quality varieties.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Linho , Arabidopsis/genética , Arabidopsis/metabolismo , Plântula/genética , Plântula/metabolismo , Linho/genética , Linho/metabolismo , Germinação/genética , Sementes/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Colorectal Dis ; 25(4): 608-615, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36394982

RESUMO

AIM: The aim of this study was to describe the baseline clinical features, treatment patterns and outcomes in rectal squamous cell carcinoma (SCC). METHOD: This is a retrospective study of patients with rectal SCC treated at the Princess Margaret Cancer Centre (Toronto, Canada) between 1 January 1995 and 31 December 2020. Clinical factors associated with locoregional failure (LRF), distant metastases (DM), disease-free survival (DFS) and overall survival (OS), such as age, sex, HIV status, T-category, nodal status, grade and primary treatment, were investigated with univariate analysis (UVA). RESULTS: Twenty nine patients with rectal SCC were analysed with a median follow-up of 7.4 years (range 0.3-20.4 years). The median age at diagnosis was 52 years, with the majority presenting with clinical T3 disease or higher (n = 21, 72%) and positive regional lymph nodes (n = 16, 55%), while more than quarter of patients (28%) had metastatic disease. Definitive chemoradiation was the treatment modality of choice in more than half of all cases (n = 17, 59%) with a response rate of 100%. The 10-year cumulative incidence of LRF and DM was, respectively, 12% (95% CI 1.8%-32.9%) and 31% (95% CI: 12.0%-52.6%). The 5- and 10-year OS was 82% (95% CI 66.1%-100%). UVA revealed a trend towards an association of male gender (hazard ratio = 4.65, 95% CI 0.9%-24.1; p = 0.067) and primary surgical treatment (hazard ratio = 0.76, 95% CI 0.09-6.34; p = 0.061) with DFS. CONCLUSION: Definitive chemoradiation is an effective and preferred treatment for rectal SCC allowing for sphincter preservation with complete clinical response observed in all patients.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Retais , Humanos , Masculino , Terapia Combinada , Estudos Retrospectivos , Neoplasias Retais/terapia , Demografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...