Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Opt Lett ; 49(5): 1305-1308, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426999

RESUMO

Temperature characteristics of GaN-based laser diodes are investigated. It is noted that the characteristic temperature of the threshold current (T0) decreases with decreasing lasing wavelength for GaN-based LDs. The performance deteriorates seriously for UV LDs at high temperature. It is ascribed to the increase of carriers escaping from quantum wells due to the lower potential barrier height. In this Letter, AlGaN is used as the barrier layer in UV LDs instead of GaN to improve the temperature characteristic of the threshold current and slope efficiency by increasing the potential barrier height of quantum wells. Based on this structure, a high output power of 4.6 W is obtained at the injection current of 3.8 A; its lasing wavelength is 386.8 nm.

2.
Opt Express ; 31(24): 39695-39702, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38041285

RESUMO

The influence of growth interruption on the surface and luminescence properties of AlGaN/GaN ultraviolet multi-quantum wells (UV MQWs) is investigated. It is found that when the well and barrier layers of MQW samples are continuously grown at the same temperature, they have lower edge dislocation density and flatter surface of MQWs compared to samples with interrupted well and barrier growth. Moreover, continuous growth of well and barrier layers is more conducive to improving the luminescence efficiency of MQWs. This phenomenon is attributed to more impurity incorporation induced by the growth interruption, while a continuous growth of well and barrier can reduce surface diffusion and migration processes of atoms, reducing the defects and surface roughness of MQWs. In addition, the continuous growth of well and barrier can better control the reaction between Al and N atoms, avoiding the formation of excessively high Al content AlGaN at the well/barrier interface, thus improving the luminescence of UV MQWs.

3.
Cyberpsychol Behav Soc Netw ; 26(12): 924-929, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37883183

RESUMO

Amblyopia affects development of children's monocular vision and binocular function and becomes a largely intractable problem with increasing aging. This study is to investigate the binocular function and evaluate efficacy of digital therapy in children 8-13 years of age with anisometropic amblyopia. The patients in the digital therapy group performed the training with the digital amblyopia therapeutic software. The visual acuity and binocular function (perceptual eye position [PEP], suppression, and stereopsis) were examined at the first visit and 3-month post-treatment. Twenty-three cases in the control group and 25 cases in the digital therapy group were enrolled. The results revealed that 3-month digital therapy can effectively improve corrected distance visual acuity (CDVA) and improve the binocular function, including PEP, suppression, and second-order stereopsis in children with anisometropic amblyopia, 8-13 years of age. Digital therapy for amblyopia can effectively improve monocular CDVA of amblyopic eyes and binocular function in older children with anisometropic amblyopia.


Assuntos
Ambliopia , Criança , Humanos , Ambliopia/terapia , Visão Binocular , Acuidade Visual , Software
4.
Opt Express ; 31(5): 7839-7849, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859907

RESUMO

Performance of InGaN-based blue-violet laser diodes (LD) with different waveguide structure were investigated by simulation and experimental methods. Theoretical calculation demonstrated that threshold current (Ith) can be reduced and slope efficiency (SE) can be improved by using an asymmetric waveguide structure. Based on the simulation results, a LD with 80-nm-thick In0.03Ga0.97N lower waveguide (LWG) and 80-nm-thick GaN upper waveguide (UWG) is fabricated with flip chip package. Under continuous wave (CW) current injection at room temperature, its optical output power (OOP) reaches 4.5 W at an operating current of 3 A and the lasing wavelength of 403 nm. The threshold current density (Jth) is 0.97 kA/cm2 and the SE is about 1.9 W/A.

5.
Nanomaterials (Basel) ; 13(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36770485

RESUMO

The dark leakage current of AlxGa1-xN Schottky barrier detectors with different Al contents is investigated. It was found that the dark leakage of AlxGa1-xN detectors increased with increasing Al content. The XRD and SIMS results showed that there was no significant difference of the dislocation density and carbon impurity concentration in five AlxGa1-xN samples with different Al content. This was likely not the main reason for the difference in dark leakage current of AlxGa1-xN detectors. However, the results of positron annihilation showed that the vacancy defect concentration increased with increasing Al content. This was consistent with the result that the dark leakage current increased with increasing Al content. With the increase of vacancy concentration, the vacancy defect energy levels also increased, and the probability of electron tunneling through defect levels increased. In contrast, the Schottky barrier height decreased, which eventually led to the increase of dark leakage current. This discovery should be beneficial to an accurate control of the performance of AlxGa1-xN detectors.

6.
Nanomaterials (Basel) ; 12(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36432275

RESUMO

Electron leakage has an adverse influence on the optical output power for laser diodes (LDs), especially where the conventional last quantum barrier (LQB) in the multiple quantum well (MQW) active region may cause severe leakage problems. In this article, a composite last quantum barrier (CLQB) composed of p-type doped AlGaN (p-AlGaN) and unintentionally doped GaN (u-GaN) layers is designed to replace the conventional one, for overcoming the problem of electron overflow. Theoretical calculations with LASTIP software demonstrate that CLQB with optimized parameters of Al composition, thickness and p-type doping concentration of the p-AlGaN layer in the CLQB can have a 50% improvement in slope efficiency (SE) compared with the conventional structure LD. This will help to realize a higher optical output power in InGaN-based violet LDs.

7.
Opt Express ; 30(17): 31044-31057, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242196

RESUMO

The influence of the nonradiative recombination in a multiple quantum well of GaN-based blue laser diodes (LDs) has been are studied experimentally and theoretically by analyzing the optical and electrical properties of LDs with various thickness and indium content of quantum wells (QWs). It is found that when keeping the LD emission wavelength nearly unchanged, the LD device performance with thinner QW and higher indium content of InGaN QWs is much better than the LD with thicker QW and lower indium content, having smaller threshold current density, higher output optical power and larger slope efficiency. Typically, the threshold current density is as low as 0.69 kA/cm2, and the corresponding threshold current is only 250 mA. The lifetime is more than 10,000 hours at a fixed injection current of 1.2 A under a room-temperature continuous-wave operation. Characteristics of photoluminescence (PL) microscopy images, temperature dependent PL spectra, time-resolved PL and electroluminescence spectra demonstrate that a reduction of the nonradiative recombination centers and an improvement of homogeneity in QWs are the main reason for the performance improvement of GaN-based LD using thinner QW layers with a higher indium content in a certain range. Moreover, theoretical calculation results demonstrate that using a thinner quantum well is also helpful for improving the device performance if the change of alloy material quality is considered during the calculation.

8.
Opt Express ; 30(20): 37131-37140, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36258630

RESUMO

We have observed the transient behavior in the AlGaN photoluminescence. Under an excitation of 325 nm He-Cd laser beam, the blue luminescence (BL) bands and yellow luminescence (YL) bands of AlGaN vary with increasing illumination time. We propose that the chemical reactions between BL-related CNON-Hi (CN-Hi) and YL-related CN-Hi (CN) defect states are the cause of such a phenomenon. The BL transition temperature (Tt) is defined as the temperature at which the intensity of BL bands induced by CNON-Hi is equal to that originated from CN-Hi. Only at Tt, BL shows a peak energy variation due to the exposure. The Tt of AlGaN is higher than what is similarly detected in GaN because of the high reactivity of Al to O.

9.
Nanomaterials (Basel) ; 12(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36144901

RESUMO

In this paper, the photoluminescence (PL) properties and surface morphology of InGaN/GaN multiple quantum well (MQW) structures with the hydrogen (H2) heat treatment of InGaN are investigated to elucidate the effect of hydrogen on the structure and surface of the MQWs. The experimental results show that the H2 heat treatment on the as-grown MQWs may lead to the decomposition of InGaN and the formation of inhomogeneous In clusters. The atomic force microscope (AFM) study indicates that although the surface roughness of the uncapped samples increases after H2 treatment, the V-defects are suppressed. Moreover, the luminescence efficiency of the MQWs can be effectively improved by growing a GaN cap layer with an appropriate thickness on the top of the MQWs, which can reduce the effects of the H2 atmosphere and high temperature on the MQWs. In addition, a morphologic transformation from step bunching to shallow steps occurs and a much smoother surface can be obtained when a thicker cap layer is adopted.

10.
Nanomaterials (Basel) ; 12(18)2022 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36144936

RESUMO

The spectral response properties of AlGaN Schottky barrier detectors with different Al content were investigated. It was found that the responsivity of AlGaN detectors decreases with increase in Al content in AlGaN. It was found that neither dislocation density nor the concentration of carbon and oxygen impurities made any remarkable difference in these AlGaN devices. However, the positron annihilation experiments showed that the concentration of Al or Ga vacancy defects (more likely Ga vacancy defects) in AlGaN active layers increased with the increase in Al content. It is assumed that the Al or Ga vacancy defects play a negative role in a detector's performance, which increases the recombination of photogenerated carriers and reduces the detector responsivity. It is necessary to control the concentration of vacancy defects for the high performance AlGaN detectors.

11.
Front Pediatr ; 10: 819998, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35601430

RESUMO

Epidemiological data about the prevalence of amblyopia around the world vary widely among regions and periods. This meta-analysis aimed to determine the global prevalence of amblyopia in children. PubMed, Embase, and the Cochrane Library were searched for prevalence studies published up to 5 November 2021. The outcome was the prevalence of amblyopia, analyzed as pooled estimates with 95% confidence intervals (CI). A total of 97 studies were included, including 4,645,274 children and 7,706 patients with amblyopia. The overall worldwide pooled prevalence of amblyopia was 1.36% (95%CI: 1.27-1.46%). The prevalence of amblyopia was higher in males (1.40%, 95%CI: 1.10-1.70%) than in females (1.24%, 95%CI: 0.94-1.54%) (OR = 0.885, 95%CI: 0.795-0.985, P = 0.025). The results of the meta-regression analysis showed that there were no significant associations between the prevalence of amblyopia and geographical area, publication year, age, sample size, and whether it was carried out in a developed or developing country (all P > 0.05). Begg's test (P = 0.065) and Egger's test (P < 0.001) showed that there was a significant publication bias in the prevalence of amblyopia. In conclusion, amblyopia is a significant vision problem worldwide, and public health strategies of early screening, treatment, and management are important.

12.
Opt Lett ; 47(7): 1666-1668, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35363704

RESUMO

Temperature characteristics of near-UV laser diodes (LDs) with a lasing wavelength of 384 nm are investigated. The characteristic temperature of threshold current (T0) of the UV LDs is low. Thus, the performance of the UV LDs under continuous wave (CW) operation is not as good as under pulsed operation especially at a high injection current. In addition, it is found that self-heating is a key factor for CW characteristics of the UV LDs, where suppression of the self-heating by using thick waveguide layers can increase the critical current of thermal rollover of the UV LD's operation. A high CW output power of 2.0 W is achieved for an InGaN near-UV LD with the n-side down on a sub-mount, whose threshold current density is 1.27 kA/cm2 and the highest wall plug efficiency (WPE) is approximately 15.9% at an injection current of 1.2 A.

13.
Opt Express ; 30(6): 9913-9923, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35299404

RESUMO

An asymmetric multiple quantum well (MQW) without the first quantum barrier layer is designed, and its effect on the device performance of GaN-based blue LDs has been studied experimentally and theoretically. It is found that compared with LD using symmetrical multiple quantum well, device performance is improved significantly by using asymmetric MQW, i.e. having a smaller threshold current density, a higher output optical power and a larger slope efficiency. The threshold current density decreases from 1.28 kA/cm2 to 0.86 kA/cm2, meanwhile, the optical power increases from 1.77 W to 2.52 W, and the slope efficiency increases from 1.15 W/A to 1.49 W/A. The electroluminescence characteristics below the threshold current demonstrate that asymmetric MQW is more homogeneous due to the suppressed strain and piezoelectric field. Furthermore, theoretical calculation demonstrates that the enhancement of electron injection ratio and reduction in optical loss are another reason for the improvement of device performance, which is attributed to a smaller electron potential barrier and a more concentrated optical field distribution in the asymmetric structure, respectively. The new structure design with asymmetric MQW is concise for epitaxial growth, and it would also be a good possible choice for GaN-based LDs with other lasing wavelengths.

14.
Opt Express ; 30(3): 3416-3423, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35209600

RESUMO

An intermedial annealing treatment is adopted during epitaxial growth of InGaN/GaN multiple quantum well (MQW) by the metal-organic chemical vapor deposition (MOCVD), which is employed after each GaN cap layer growth is finished. Optical power, threshold current and slope efficiency of GaN-based laser diodes is improved through an appropriate intermedial annealing process. A further investigation about the influence of annealing duration on the luminescence characteristics of light-emitting diodes and the surface topography evolution of single quantum well layers is conducted through the study of electroluminescence, temperature dependent photoluminescence and atomic force microscopy. It is found that the improvement of GaN-based laser diode is attributed to reduction of nonradiative recombination centers in MQW, which is due to a better interface quality between well and barrier layers after an intermedial annealing process.

15.
Nanoscale Res Lett ; 16(1): 161, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34727236

RESUMO

In this work, three GaN-based multiple quantum well (MQW) samples are grown to investigate the growth techniques of high-quality MQWs at low temperature (750 °C). Instead of conventional temperature ramp-up process, H2/NH3 gas mixture was introduced during the interruption after the growth of InGaN well layers. The influence of hydrogen flux was investigated. The cross-sectional images of MQW via transmission electron microscope show that a significant atomic rearrangement process happens during the hydrogen treatment. Both sharp interfaces of MQW and homogeneous indium distribution are achieved when a proper proportion of hydrogen was used. Moreover, the luminescence efficiency is improved strongly due to suppressed non-radiative recombination process and a better homogeneity of MQWs. Such kind of atomic rearrangement process is mainly caused by the larger diffusion rate of gallium and indium adatoms in H2/NH3 mixed gas, which leads to a lower potential barrier energy to achieve thermodynamic steady state. However, when excessive hydrogen flux is introduced, the MQW will be partly damaged, and the luminescence performance will deteriorate.

16.
Opt Express ; 29(21): 33992-34001, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809198

RESUMO

We propose a stepped upper waveguide layer (UWG) to improve the hole injection efficiency of GaN-based laser diodes (LDs), and investigate its effect on the performance of LDs from experiments and theoretical calculations. The experimental characterization of the LD with stepped UWG presents a decrease of 16.6% for the threshold current as well as an increase of 41.2% for the slope efficiency compared to the LD with conventional GaN UWG. Meanwhile, strong localized effects are found in the quantum wells of LD with stepped UWG and a large blue-shift in the electroluminescence (EL) spectra below the threshold by analyzing the differential efficiency and the EL spectra. The large blue shift implies a stronger polarization field in the LDs, which may affect the injection of holes. Additionally, the simulation results demonstrate that the LD with stepped UWG achieves higher hole injection efficiency by modulating the valence band, and the hole current density injected into the quantum wells reaches 6067 A/cm2.

17.
Nanomaterials (Basel) ; 11(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923643

RESUMO

An increase of integrated photoluminescence (PL) intensity has been observed in a GaN-based multiple quantum wells (MQWs) sample. The integrated intensity of TDPL spectra forms an anomalous variation: it decreases from 30 to 100 K, then increases abnormally from 100 to 140 K and decreases again when temperature is beyond 140 K. The increased intensity is attributed to the electrons and holes whose distribution are spatial non-equilibrium distributed participated in the radiative recombination process and the quantum barrier layers are demonstrated to be the source of non-equilibrium distributed carriers. The temperature dependence of this kind of spatial non-equilibrium carriers' dynamics is very different from that of equilibrium carriers, resulting in the increased emission efficiency which only occurs from 100 to 140 K. Moreover, the luminescence efficiency of MQWs with non-equilibrium carriers is much higher than that without non-equilibrium carriers, indicating the high luminescence efficiency of GaN-based LEDs may be caused by the non-equilibrium distributed carriers. Furthermore, a comparison analysis of MQWs sample with and without hydrogen treatment further demonstrates that the better quantum well is one of the key factors of this anomalous phenomenon.

18.
Opt Express ; 29(3): 3685-3693, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33770963

RESUMO

Yellow Luminescence (YL) band and blue luminescence (BL) band in a studied unintentionally doped GaN sample show a transient behaviour where the observed luminescence intensities change with the exposure time of the sample under 325 nm laser beam excitation at 10-300 K. Such an intensity variation is accompanied with a red-shift for YL peak at 10-140 K and one for BL peak at 140 K. We propose that such behaviours are related to the chemical transformations of YL-related CN and CNON defects, and BL-related CN-Hi and CNON-Hi defects during the exposure.

19.
Nanoscale Res Lett ; 15(1): 191, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33001341

RESUMO

Three InGaN/GaN MQWs samples with varying GaN cap layer thickness were grown by metalorganic chemical vapor deposition (MOCVD) to investigate the optical properties. We found that a thicker cap layer is more effective in preventing the evaporation of the In composition in the InGaN quantum well layer. Furthermore, the quantum-confined Stark effect (QCSE) is enhanced with increasing the thickness of GaN cap layer. In addition, compared with the electroluminescence measurement results, we focus on the difference of localization states and defects in three samples induced by various cap thickness to explain the anomalies in room temperature photoluminescence measurements. We found that too thin GaN cap layer will exacerbates the inhomogeneity of localization states in InGaN QW layer, and too thick GaN cap layer will generate more defects in GaN cap layer.

20.
Nanoscale Res Lett ; 15(1): 38, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32040646

RESUMO

The effect of unintentionally doped hydrogen on the properties of Mg-doped p-GaN samples grown via metal-organic chemical vapor deposition (MOCVD) is investigated through room temperature photoluminescence (PL) and Hall and secondary ion mass spectroscopy (SIMS) measurements. It is found that there is an interaction between the residual hydrogen and carbon impurities. An increase of the carbon doping concentration can increase resistivity of the p-GaN and weaken blue luminescence (BL) band intensity. However, when hydrogen incorporation increased with carbon doping concentration, the increase of resistivity caused by carbon impurity is weaken and the BL band intensity is enhanced. This suggests that the co-doped hydrogen not only passivate MgGa, but also can passivate carbon impurities in Mg-doped p-GaN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...