Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.860
Filtrar
1.
Drugs R D ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949758

RESUMO

BACKGROUND: Vupanorsen is a GalNAc3-conjugated antisense oligonucleotide targeting angiopoietin-like 3 (ANGPTL3) mRNA shown to reduce atherogenic lipoproteins in individuals with dyslipidemia. OBJECTIVES: The aim of this study was to satisfy Chinese regulatory requirements and support ethnic sensitivity assessment by evaluating pharmacokinetics (PK), pharmacodynamics (PD), and safety of vupanorsen in healthy Chinese adults with elevated triglycerides (TG). METHODS: In this phase I, parallel-cohort, open-label study, 18 Chinese adults with elevated fasting TG (≥ 90 mg/dL) were randomized 1:1 to receive a single subcutaneous dose of vupanorsen 80 mg or 160 mg. PK parameters, PD markers (including ANGPTL3, TG, non-high-density lipoprotein cholesterol [non-HDL-C]), and safety were assessed. RESULTS: Absorption of vupanorsen was rapid (median time to maximum concentration [Tmax]: 2.0 h for both doses), followed by a multiphasic decline (mean terminal half-life 475.9 [80 mg] and 465.2 h [160 mg]). Exposure (area under curve [AUC] and maximum plasma concentration [Cmax]) generally increased in a greater than dose-proportional manner from 80 mg to 160 mg. Time-dependent reductions in ANGPTL3 and lipid parameters were observed. Mean percentage change from baseline for the 80-mg and 160-mg doses, respectively, were - 59.7% and - 69.5% for ANGPTL3, - 41.9% and - 52.5% for TG, and - 23.2% and - 25.4% for non-HDL-C. No serious or severe adverse events (AEs), deaths, or discontinuations due to AEs were reported. Three participants experienced treatment-related AEs; all were mild and resolved by end of study. CONCLUSIONS: This study provided the first clinical vupanorsen data in China. In Chinese participants with elevated TG, PK and PD parameters were consistent with those reported previously in non-Chinese participants, including in Japanese individuals. No safety concerns were noted. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT04916795.

2.
Angew Chem Int Ed Engl ; : e202407895, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949843

RESUMO

The diterpene synthase AfAS was identified from Aspergillus fumigatiaffinis. Its amino acid sequence and - according to a structural model - active site architecture are highly similar to those of the fusicocca-2,10(14)-diene synthase PaFS, but AfAS produces a structurally much more complex diterpene with a novel 6-5-5-5 tetracyclic skeleton called asperfumene. The cyclisation mechanism of AfAS was elucidated through isotopic labelling experiments and DFT calculations. The reaction cascade proceeds in its initial steps through similar intermediates as for the PaFS cascade, but then diverges through an unusual vicinal deprotonation-reprotonation process that triggers a skeletal rearrangement at the entrance to the steps leading to the unique asperfumene skeleton. The structural model revealed only one major difference between the active sites: The PaFS residue F65 is substituted by I65 in AfAS. Intriguingly, site-directed mutagenesis experiments with both diterpene synthases revealed that position 65 serves as a bidirectional functional switch for the biosynthesis of tetracyclic asperfumene versus structurally less complex diterpenes.

3.
Curr Med Sci ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990448

RESUMO

OBJECTIVE: To determine the factors that contribute to the survival of elderly individuals diagnosed with brain glioma and develop a prognostic nomogram. METHODS: Data from elderly individuals (age ≥65 years) histologically diagnosed with brain glioma were sourced from the Surveillance, Epidemiology, and End Results (SEER) database. The dataset was randomly divided into a training cohort and an internal validation cohort at a 6:4 ratio. Additionally, data obtained from Tangdu Hospital constituted an external validation cohort for the study. The identification of independent prognostic factors was achieved through the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis, enabling the construction of a nomogram. Model performance was evaluated using C-index, ROC curves, calibration plot and decision curve analysis (DCA). RESULTS: A cohort of 20 483 elderly glioma patients was selected from the SEER database. Five prognostic factors (age, marital status, histological type, stage, and treatment) were found to significantly impact overall survival (OS) and cancer-specific survival (CSS), with tumor location emerging as a sixth variable independently linked to CSS. Subsequently, nomogram models were developed to predict the probabilities of survival at 6, 12, and 24 months. The assessment findings from the validation queue indicate a that the model exhibited strong performance. CONCLUSION: Our nomograms serve as valuable prognostic tools for assessing the survival probability of elderly glioma patients. They can potentially assist in risk stratification and clinical decision-making.

4.
World J Virol ; 13(2): 91286, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38984081

RESUMO

Severe acute respiratory syndrome coronavirus-2 is a highly contagious positive-sense, single-stranded RNA virus that has rapidly spread worldwide. As of December 17, 2023, 772838745 confirmed cases including 6988679 deaths have been reported globally. This virus primarily spreads through droplets, airborne transmission, and direct contact. Hospitals harbor a substantial number of confirmed coronavirus disease 2019 (COVID-19) patients and asymptomatic carriers, accompanied by high population density and a larger susceptible population. These factors serve as potential triggers for nosocomial infections, posing a threat during the COVID-19 pandemic. Nosocomial infections occur to varying degrees across different countries worldwide, emphasizing the urgent need for a practical approach to prevent and control the intra-hospital spread of COVID-19. This study primarily concentrated on a novel strategy combining preventive measures with treatment for combating COVID-19 nosocomial infections. It suggests preventive methods, such as vaccination, disinfection, and training of heathcare personnel to curb viral infections. Additionally, it explored therapeutic strategies targeting cellular inflammatory factors and certain new medications for COVID-19 patients. These methods hold promise in rapidly and effectively preventing and controlling nosocomial infections during the COVID-19 pandemic and provide a reliable reference for adopting preventive measures in the future pandemic.

5.
Sci Total Environ ; 947: 174568, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38977093

RESUMO

The relationship between co-exposure to multiple metals and gestational diabetes mellitus (GDM) and the mechanisms involved are poorly understood. In this nested case-control study, 228 GDM cases and 456 matched controls were recruited, and biological samples were collected at 12-14 gestational weeks. The urinary concentrations of 10 metals and 8-hydroxydeoxyguanosine (8-OHdG) as well as the serum levels of malondialdehyde (MDA) and advanced glycation end products (AGEs) were determined to assess the association of metals with GDM risk and the mediating effects of oxidative stress. Urinary Ti concentration was significantly and positively associated with the risk of GDM (odds ratio [OR]:1.45, 95 % confidence interval [CI]: 1.12, 1.88), while Mn and Fe were negatively associated with GDM risk (OR: 0.67, 95 % CI: 0.50, 0.91 or OR: 0.61, 95 % CI: 0.47, 0.80, respectively). A significant negative association was observed between Mo and GDM risk, specifically in overweight and obese pregnant women. Bayesian kernel machine regression showed a significant negative joint effect of the mixture of 10 metals on GDM risk. The adjusted restricted cubic spline showed a protective role of Mn and Fe in GDM risk (P < 0.05). A significant negative association was observed between essential metals and GDM risk in quantile g-computation analysis (P < 0.05). Mediation analyses showed a mediating effect of MDA on the association between Ti and GDM risk, with a proportion of 8.7 % (P < 0.05), and significant direct and total effects on Ti, Mn, and Fe. This study identified Ti as a potential risk factor and Mn, Fe, and Mo as potential protective factors against GDM, as well as the mediating effect of lipid oxidation.

6.
Nat Commun ; 15(1): 5713, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977661

RESUMO

Cellular senescence is characterized by a decrease in protein synthesis, although the underlying processes are mostly unclear. Chemical modifications to transfer RNAs (tRNAs) frequently influence tRNA activity, which is crucial for translation. We describe how tRNA N7-methylguanosine (m7G46) methylation, catalyzed by METTL1-WDR4, regulates translation and influences senescence phenotypes. Mettl1/Wdr4 and m7G gradually diminish with senescence and aging. A decrease in METTL1 causes a reduction in tRNAs, especially those with the m7G modification, via the rapid tRNA degradation (RTD) pathway. The decreases cause ribosomes to stall at certain codons, impeding the translation of mRNA that is essential in pathways such as Wnt signaling and ribosome biogenesis. Furthermore, chronic ribosome stalling stimulates the ribotoxic and integrative stress responses, which induce senescence-associated secretory phenotype. Moreover, restoring eEF1A protein mitigates senescence phenotypes caused by METTL1 deficiency by reducing RTD. Our findings demonstrate that tRNA m7G modification is essential for preventing premature senescence and aging by enabling efficient mRNA translation.


Assuntos
Senescência Celular , Guanosina , Metiltransferases , Biossíntese de Proteínas , RNA de Transferência , Senescência Celular/genética , RNA de Transferência/metabolismo , RNA de Transferência/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Guanosina/análogos & derivados , Guanosina/metabolismo , Metilação , Humanos , Ribossomos/metabolismo , Envelhecimento/metabolismo , Envelhecimento/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Animais , Fator 1 de Elongação de Peptídeos/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Estabilidade de RNA
7.
Eur Radiol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38987398

RESUMO

OBJECTIVES: To investigate the effect of motion-compensated reconstruction (MCR) algorithm on improving the image quality of coronary computed tomography angiography (CCTA) using second-generation dual-layer spectral detector computed tomography (DLCT), and to evaluate the influence of heart rate (HR) on the motion-correction efficacy of this algorithm. MATERIALS AND METHODS: We retrospectively enrolled 127 patients who underwent CCTA for suspected coronary artery disease using second-generation DLCT. We divided the patients into two subgroups according to their average HR during scanning: the "HR < 75 bpm" group and the "HR ≥ 75 bpm" group. All images were reconstructed by the standard (STD) algorithm and MCR algorithm. Subjective image quality (4-point Likert scale), interpretability, and objective image quality between the STD and MCR in the whole population and within each subgroup were compared. RESULTS: MCR showed significantly higher Likert scores and interpretability than STD on the per-segment (3.58 ± 0.69 vs. 2.82 ± 0.93, 98.4% vs. 91.9%), per-vessel (3.12 ± 0.81 vs. 2.12 ± 0.74, 96.3% vs. 78.7%) and per-patient (2.57 ± 0.76 vs. 1.62 ± 0.55, 90.6% vs. 59.1%) levels (all p < 0.001). In the analysis of HR subgroups on a per-vessel basis of interpretability, significant differences were observed only in the right coronary artery in the low HR group, whereas significant differences were noted in three major coronary arteries in the high HR group. For objective image quality assessment, MCR significantly improved the SNR (13.22 ± 4.06 vs. 12.72 ± 4.06) and the contrast-to-noise ratio (15.84 ± 4.82 vs. 15.39 ± 4.38) compared to STD (both p < 0.001). CONCLUSION: MCR significantly improves the subjective image quality, interpretability, and objective image quality of CCTA, especially in patients with higher HRs. CLINICAL RELEVANCE STATEMENT: The motion-compensated reconstruction algorithm of the second-generation dual-layer spectral detector computed tomography is helpful in improving the image quality of coronary computed tomography angiography in clinical practice, especially in patients with higher heart rates. KEY POINTS: Motion artifacts from cardiac movement affect the quality and interpretability of coronary computed tomography angiography (CCTA). This motion-compensated reconstruction (MCR) algorithm significantly improves the image quality of CCTA in clinical practice. Image quality improvement by using MCR was more significant in the high heart rate group.

8.
Biomed Environ Sci ; 37(6): 639-646, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38988114

RESUMO

Objective: To develop a highly sensitive and rapid nucleic acid detection method for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods: We designed, developed, and manufactured an integrated disposable device for SARS-CoV-2 nucleic acid extraction and detection. The precision of the liquid transfer and temperature control was tested. A comparison between our device and a commercial kit for SARS-Cov-2 nucleic acid extraction was performed using real-time fluorescence reverse transcription polymerase chain reaction (RT-PCR). The entire process, from SARS-CoV-2 nucleic acid extraction to amplification, was evaluated. Results: The precision of the syringe transfer volume was 19.2 ± 1.9 µL (set value was 20), 32.2 ± 1.6 (set value was 30), and 57.2 ± 3.5 (set value was 60). Temperature control in the amplification tube was measured at 60.0 ± 0.0 °C (set value was 60) and 95.1 ± 0.2 °C (set value was 95) respectively. SARS-Cov-2 nucleic acid extraction yield through the device was 7.10 × 10 6 copies/mL, while a commercial kit yielded 2.98 × 10 6 copies/mL. The mean time to complete the entire assay, from SARS-CoV-2 nucleic acid extraction to amplification detection, was 36 min and 45 s. The detection limit for SARS-CoV-2 nucleic acid was 250 copies/mL. Conclusion: The integrated disposable devices may be used for SARS-CoV-2 Point-of-Care test (POCT).


Assuntos
COVID-19 , Equipamentos Descartáveis , RNA Viral , SARS-CoV-2 , SARS-CoV-2/isolamento & purificação , COVID-19/diagnóstico , COVID-19/virologia , Humanos , RNA Viral/isolamento & purificação , RNA Viral/análise , Teste de Ácido Nucleico para COVID-19/instrumentação , Teste de Ácido Nucleico para COVID-19/métodos , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/instrumentação
9.
Sci Data ; 11(1): 739, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972884

RESUMO

Cellular senescence (CS) is closely related to tumor progression. However, the studies about CS genes across human cancers have not explored the relationship between cancer senescence signature and telomere length. Additionally, single-cell analyses have not revealed the evolutionary trends of malignant cells and immune cells at the CS level. We defined a CS-associated signature, called "senescence signature", and found that patients with higher senescence signature had worse prognosis. Higher senescence signature was related to older age, higher genomic instability, longer telomeres, increased lymphocytic infiltration, higher pro-tumor immune infiltrates (Treg cells and MDSCs), and could predict responses to immune checkpoint inhibitor therapy. Single-cell analysis further reveals malignant cells and immune cells share a consistent evolutionary trend at the CS level. MAPK signaling pathway and apoptotic processes may play a key role in CS, and senescence signature may effectively predict sensitivity of MEK1/2 inhibitors, ERK1/2 inhibitors and BCL-2 family inhibitors. We also developed a new CS prediction model of cancer survival and established a portal website to apply this model ( https://bio-pub.shinyapps.io/cs_nomo/ ).


Assuntos
Senescência Celular , Neoplasias , Análise de Célula Única , Humanos , Neoplasias/imunologia , Imunossenescência , Instabilidade Genômica , Prognóstico , Multiômica
10.
Food Chem ; 458: 140282, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38981398

RESUMO

Soybean protein isolate (SPI) was frequently used to make edible films due to its highly degradability and excellent film forming ability. However, the limited barrier properties and low tensile strength of SPI films prevent their application in food packaging. In this study, the SPI film was modified by blending camellia oil body-based oleogel (COBO). COBO improved the mechanical properties of SPI film and increased its light-blocking, water insolubility and barrier properties. Micrograph, particle size distribution, protein conformation and crystalline structure analysis illustrated that camellia saponin in COBO formed hydrogen bonds with SPI, significantly reduced the particle size of the film-forming emulsion, and enhanced the order and uniformity of composite films structure, thus improved the overall performance of the SPI films. The SPI-COBO film packing delayed the weight loss, total soluble solids content increase, and the decrease in hardness of stored strawberries. This study puts forwards a new approach for SPI film modification by blending natural emulsified lipids, contributing to the development of sustainable packaging alternatives.

11.
ACS Nano ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954632

RESUMO

The advent of catheter-based minimally invasive surgical instruments has provided an effective means of diagnosing and treating human disease. However, conventional medical catheter devices are limited in functionalities, hindering their ability to gather tissue information or perform precise treatment during surgery. Recently, electronic catheters have integrated various sensing and therapeutic technologies through micro/nanoelectronics, expanding their capabilities. As micro/nanoelectronic devices become more miniaturized, flexible, and stable, electronic surgical catheters are evolving from simple tools to multiplexed sensing and theranostics for surgical applications. The review on multifunctional electronic surgical catheters is lacking and thus is not conducive to the reader's comprehensive understanding of the development trend in this field. This review covers the advances in multifunctional electronic catheters for precise and intelligent diagnosis and therapy in minimally invasive surgery. It starts with the summary of clinical minimally invasive surgical instruments, followed by the background of current clinical catheter devices for sensing and therapeutic applications. Next, intelligent electronic catheters with integrated electronic components are reviewed in terms of electronic catheters for diagnosis, therapy, and multifunctional applications. It highlights the present status and development potential of catheter-based minimally invasive surgical devices, while also illustrating several significant challenges that remain to be overcome.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38954822

RESUMO

BACKGROUND: Intestinal inflammation and compromised barrier function are critical factors in the pathogenesis of gastrointestinal disorders. This study aimed to investigate the role of miR-192-5p in modulating intestinal epithelial barrier (IEB) integrity and its association with autophagy. METHODS: A DSS-induced colitis model was used to assess the effects of miR-192-5p on intestinal inflammation. In vitro experiments involved cell culture and transient transfection techniques. Various assays, including dual-luciferase reporter gene assays, quantitative real-time PCR, western blotting, and measurements of transepithelial electrical resistance, were performed to evaluate changes in miR-192-5p expression, Rictor levels, and autophagy flux. Immunofluorescence staining, H&E staining, TEER measurements, and FITC-dextran analysis were also employed. RESULTS: Our findings revealed a reduced expression of miR-192-5p in inflamed intestinal tissues, correlating with impaired IEB function. Overexpression of miR-192-5p alleviated TNF-induced IEB dysfunction by targeting Rictor, resulting in enhanced autophagy flux in enterocytes (ECs). Moreover, the therapeutic potential of miR-192-5p was substantiated in colitis mice, wherein increased miR-192-5p expression ameliorated intestinal inflammatory injury by enhancing autophagy flux in ECs through the modulation of Rictor. CONCLUSION: Our study highlights the therapeutic potential of miR-192-5p in enteritis by demonstrating its role in regulating autophagy and preserving IEB function. Targeting the miR-192-5p/Rictor axis is a promising approach for mitigating gut inflammatory injury and improving barrier integrity in enteritis patients.

13.
Cell Death Dis ; 15(7): 465, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956026

RESUMO

Myelodysplastic syndromes (MDS) are clonal hematopoietic malignancies and seriously threaten people's health. Current therapies include bone marrow transplantation and several hypomethylating agents. However, many elderly patients cannot benefit from bone marrow transplantation and many patients develop drug resistance to hypomethylating agents, making it urgent to explore novel therapy. RSL3 can effectively induce ferroptosis in various tumors and combination of RSL3 and hypomethylating agents is promising to treat many tumors. However, its effect in MDS was unknown. In this study, we found that RSL3 inhibited MDS cell proliferation through inducing ROS-dependent apoptosis. RSL3 inhibited Bcl-2 expression and increased caspase 3 and PARP cleavage. RNA-seq analysis revealed that MYB may be a potential target of RSL3. Rescue experiments showed that overexpression of MYB can rescue MDS cell proliferation inhibition caused by RSL3. Cellular thermal shift assay showed that RSL3 binds to MYB to exert its function. Furthermore, RSL3 inhibited tumor growth and decreased MYB and Bcl-2 expression in vivo. More importantly, RSL3 decreased the viability of bone marrow mononuclear cells (BMMCs) isolated from MDS patients, and RSL3 had a synergistic effect with DAC in MDS cells. Our studies have uncovered RSL3 as a promising compound and MYB/Bcl-2 signaling pathway as a potential target for MDS treatment.


Assuntos
Apoptose , Síndromes Mielodisplásicas , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Proto-Oncogênicas c-myb , Espécies Reativas de Oxigênio , Transdução de Sinais , Síndromes Mielodisplásicas/patologia , Síndromes Mielodisplásicas/metabolismo , Síndromes Mielodisplásicas/genética , Humanos , Apoptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo , Proteínas Proto-Oncogênicas c-myb/genética , Espécies Reativas de Oxigênio/metabolismo , Animais , Camundongos , Proliferação de Células , Camundongos Nus , Masculino , Feminino
14.
Nat Commun ; 15(1): 5562, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956023

RESUMO

Droplet-based single-cell sequencing techniques rely on the fundamental assumption that each droplet encapsulates a single cell, enabling individual cell omics profiling. However, the inevitable issue of multiplets, where two or more cells are encapsulated within a single droplet, can lead to spurious cell type annotations and obscure true biological findings. The issue of multiplets is exacerbated in single-cell multiomics settings, where integrating cross-modality information for clustering can inadvertently promote the aggregation of multiplet clusters and increase the risk of erroneous cell type annotations. Here, we propose a compound Poisson model-based framework for multiplet detection in single-cell multiomics data. Leveraging experimental cell hashing results as the ground truth for multiplet status, we conducted trimodal DOGMA-seq experiments and generated 17 benchmarking datasets from two tissues, involving a total of 280,123 droplets. We demonstrated that the proposed method is an essential tool for integrating cross-modality multiplet signals, effectively eliminating multiplet clusters in single-cell multiomics data-a task at which the benchmarked single-omics methods proved inadequate.


Assuntos
Análise de Célula Única , Análise de Célula Única/métodos , Humanos , Animais , Análise por Conglomerados , Algoritmos , Camundongos , Distribuição de Poisson , Multiômica
15.
Int J Nanomedicine ; 19: 6463-6483, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38946882

RESUMO

Purpose: Mitochondrial oxidative stress is an important factor in cell apoptosis. Cerium oxide nanomaterials show great potential for scavenging free radicals and simulating superoxide dismutase (SOD) and catalase (CAT) activities. To solve the problem of poor targeting of cerium oxide nanomaterials, we designed albumin-cerium oxide nanoclusters (TPP-PCNLs) that target the modification of mitochondria with triphenyl phosphate (TPP). TPP-PCNLs are expected to simulate the activity of superoxide dismutase, continuously remove reactive oxygen species, and play a lasting role in radiation protection. Methods: First, cerium dioxide nanoclusters (CNLs), polyethylene glycol cerium dioxide nanoclusters (PCNLs), and TPP-PCNLs were characterized in terms of their morphology and size, ultraviolet spectrum, dispersion stability and cellular uptake, and colocalization Subsequently, the anti-radiation effects of TPP-PCNLs were investigated using in vitro and in vivo experiments including cell viability, apoptosis, comet assays, histopathology, and dose reduction factor (DRF). Results: TPP-PCNLs exhibited good stability and biocompatibility. In vitro experiments indicated that TPP-PCNLs could not only target mitochondria excellently but also regulate reactive oxygen species (ROS)levels in whole cells. More importantly, TPP-PCNLs improved the integrity and functionality of mitochondria in irradiated L-02 cells, thereby indirectly eliminating the continuous damage to nuclear DNA caused by mitochondrial oxidative stress. TPP-PCNLs are mainly targeted to the liver, spleen, and other extramedullary hematopoietic organs with a radiation dose reduction factor of 1.30. In vivo experiments showed that TPP-PCNLs effectively improved the survival rate, weight change, hematopoietic function of irradiated animals. Western blot experiments have confirmed that TPP-PCNLs play a role in radiation protection by regulating the mitochondrial apoptotic pathway. Conclusion: TPP-PCNLs play a radiologically protective role by targeting extramedullary hematopoietic organ-liver cells and mitochondria to continuously clear ROS.


Assuntos
Apoptose , Cério , Hematopoese , Mitocôndrias , Espécies Reativas de Oxigênio , Cério/química , Cério/farmacologia , Animais , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Hematopoese/efeitos dos fármacos , Hematopoese/efeitos da radiação , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Protetores contra Radiação/farmacologia , Protetores contra Radiação/química , Humanos , Proteção Radiológica/métodos , Linhagem Celular
16.
J Colloid Interface Sci ; 675: 36-51, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964123

RESUMO

The defects formed by N doping always coexist with pyrrole nitrogen (Po) and pyridine nitrogen (Pd), and the synergistic mechanisms of H2O2 production and PMS activation between the different Po: Pd are unknown. This paper synthesized MOF-derived carbon materials with different nitrogen-type ratios as cathode materials in an electro-Fenton system using precursors with different nitrogen-containing functional groups. Several catalysts with different Po: Pd ratios (0:4, 1:3, 2:2, 3:1, 4:0) were prepared, and the best catalyst for LEV degradation was FC-CN (Po: Pd=3:1). X-ray Photoelectron Spectroscopy (XPS) and density-functional theory (DFT) calculations show that the introduction of nitrogen creates an interfacial micro-electric field (IMEF) in the carbon layer and the metal, accelerates the electron transfer from the carbon layer to the Co atoms, and promotes cycling between the Fe3+/Co2+ redox pairs, with the electron transfer reaching a maximum at Po: Pd = 3:1. FC-CN (Po: Pd=3:1) achieved more than 95 % LEV degradation in 90 min at pH = 3-9, with a lower energy consumption of 0.11 kWh m-3 order-1. and the energy consumption of the catalyst for LEV degradation is lower than that of those catalysts reported. In addition, the degradation pathway of LEV was proposed based on UPLC-MS and Fukui function. This study offers some valuable information for the application of MOF derivatives.

17.
Heliyon ; 10(12): e32789, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975065

RESUMO

Huoxiang Zhengqi San (HXZQS), a traditional Chinese herbal formula, enjoys widespread use in Chinese medicine to treat diarrhea with cold-dampness trapped spleen syndrome (CDSS), which is induced by exposure to cold and high humidity stress. This study aimed to explore its therapeutic mechanisms in mice, particularly focusing on the intestinal microbiota. Forty male SPF-grade KM mice were allocated into two groups: the normal control group (H-Cc, n = 10) and the CDSS group (H-Mc, n = 30). After modeling, H-Mc was subdivided into H-Mc (n = 15) and HXZQS treatment (H-Tc, n = 15) groups. Intestinal samples were analyzed for enzyme activity and microbiota composition. Our findings demonstrated a notable reduction in intestinal lactase activity post-HXZQS treatment (P < 0.05). Lactobacillus johnsonii, Lactobacillus reuteri, and Lactobacillus murinus emerged as the main dominant species across most groups. However, in the H-Mc group, Clostridium sensu stricto 1 was identified as the exclusive dominant bacteria. LEfSe analysis highlighted Clostridiales vadinBB60 group and Corynebacterium as differential bacteria in the H-Tc group, and Cyanobacteria unidentified specie in the H-Mc group. Predicted microbiota functions aligned with changes in abundance, notably in cofactors and vitamins metabolism. The collinear results of the intestinal microbiota interaction network showed that HXZQS restored cooperative interactions among rare bacteria by mitigating their mutual promotion. The HXZQS decoction effectively alleviates diarrhea with CDSS by regulating intestinal microbiota, digestive enzyme activity, and microbiota interaction. Notably, it enhances Clostridium vadinBB60 and suppresses Cyanobacteria unidentified specie, warranting further study.

18.
Prev Med Rep ; 43: 102790, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38975279

RESUMO

Objective: When chatting, people often forget what they want to say, that is, they suffer from subjective memory complaints (SMCs). This research examines the Association between sleep duration and self-reported SMC in a sample representing the entire United States. Methods: We examined data from 5567 individuals (aged 20-80) who participated in the National Health and Nutrition Examination Survey (2015-2018) to evaluate the association between sleep duration and SMC. Odds ratios (ORs) and a restricted cubic spline (RCS) curve were calculated with multiple logistic regression, and subgroup analysis was performed. Results: Approximately 5.8 % (3 2 3) reported SMC, and most are older people (1 6 3). RCS analysis treating sleep duration as a continuous variable revealed a J-shaped curve association between sleep duration and SMC. Self-reported sleep duration was significantly linked to a 33 % elevated risk of SMC (OR, 1.33; 95 % confidence interval [CI], 1.23-1.43; P < 0.001). In the group analysis, individuals who slept more than 8 h per day had a greater association of experiencing SMC than those who slept for 6-8 h/day (OR, 1.75; 95 % CI, 1.36-2.23; P < 0.001). In the analysis of age groups, the stable association between sleep duration and SMC was observed only in the 60-80 age bracket (OR, 1.59; 95 % CI, 1.09-2.33; P < 0.001). Conclusions: We found that people with self-report sleep duration exceeding 8 h are more likely to experience SMC, especially older adults. Improving sleep health may be an effective strategy for preventing SMC and cognitive impairment.

19.
Front Public Health ; 12: 1399192, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993697

RESUMO

Objective: Providing the human papillomavirus (HPV) vaccine is effective to eliminate the disparity in HPV-related cancers. It is unknown regarding inequality in the distribution of HPV vaccination in China since the vaccine was licensed and approved for use in 2016. This study aimed to examine socioeconomic inequalities in HPV-related knowledge and vaccination and identified factors associated with such inequalities. Methods: Self-administered questionnaires measuring HPV-related knowledge and vaccine uptake were completed by 1,306 women through online survey platform. HPV knowledge was assessed using a 12-item question stem that covered the hazards of HPV infection, HPV vaccine dosage, benefits, and protection. Cluster analysis by combining monthly household income, educational level, and employment status was used to identify socioeconomic status (SES) class. The concentration index (CI) was employed as a measure of socioeconomic inequalities in HPV-related knowledge and vaccination. Linear regression and logistic regression were established to decompose the contributions of associated factors to the observed inequalities. Results: The CI for HPV-related knowledge and vaccine uptake was 0.0442 and 0.1485, respectively, indicating the higher knowledge and vaccination rate were concentrated in groups with high SES. Education and household income made the largest contribution to these inequalities. Age, residency and cervical cancer screening were also important contributors of observed inequalities. Conclusion: Socioeconomic inequalities in HPV-related knowledge and vaccination uptake are evident in China. Interventions to diffuse HPV-related information for disadvantaged groups are helpful to reduce these inequalities. Providing low or no-cost HPV vaccination and ensuring accessibility of vaccines in rural areas are also considered to be beneficial.


Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Fatores Socioeconômicos , Humanos , Feminino , China , Vacinas contra Papillomavirus/administração & dosagem , Estudos Transversais , Adulto , Infecções por Papillomavirus/prevenção & controle , Inquéritos e Questionários , Pessoa de Meia-Idade , Neoplasias do Colo do Útero/prevenção & controle , Adulto Jovem , Adolescente , Vacinação/estatística & dados numéricos , Aceitação pelo Paciente de Cuidados de Saúde/estatística & dados numéricos , Papillomavirus Humano
20.
Theranostics ; 14(10): 3793-3809, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994031

RESUMO

Rationale: CD8+ T cells undergo a series of metabolic reprogramming processes during their activation and proliferation, including increased glycolysis, decreased aerobic oxidation of sugars, increased amino acid metabolism and increased protein synthesis. However, it is still unclear what factors regulate these metabolic reprogramming processes in CD8+ T cells in the tumor immune microenvironment. Methods: T cell chromobox protein 4 (CBX4) knock-out mice models were used to determine the role of CBX4 in CD8+ T cells on the tumor immune microenvironment and tumor progression. Flow cytometry, Cut-Tag qPCR, Chip-seq, immunoprecipitation, metabolite detection, lentivirus infection and adoptive T cells transfer were performed to explore the underlying mechanisms of CBX4 knock-out in promoting CD8+ T cell activation and inhibiting tumor growth. Results: We found that CBX4 expression was induced in tumor-infiltrating CD8+ T cells and inhibited CD8+ T cell function by regulating glucose metabolism in tumor tissue. Mechanistically, CBX4 increases the expression of the metabolism-associated molecule aldolase B (Aldob) through sumoylation of trans-acting transcription factor 1 (SP1) and Krüppel-like factor 3 (KLF3). In addition, Aldob inhibits glycolysis and ATP synthesis in T cells by reducing the phosphorylation of the serine/threonine protein kinase (Akt) and ultimately suppresses CD8+ T cell function. Significantly, knocking out CBX4 may improve the efficacy of anti-PD-1 therapy by enhancing the function of CD8+ T cells in the tumor microenvironment. Conclusion: CBX4 is involved in CD8+ T cell metabolic reprogramming and functional persistence in tumor tissues, and serves as an inhibitor in CD8+ T cells' glycolysis and effector function.


Assuntos
Linfócitos T CD8-Positivos , Glicólise , Camundongos Knockout , Microambiente Tumoral , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Camundongos , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Frutose-Bifosfato Aldolase/metabolismo , Frutose-Bifosfato Aldolase/genética , Proteínas do Grupo Polycomb/metabolismo , Proteínas do Grupo Polycomb/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Humanos , Reprogramação Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...