Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(1-1): 014601, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38366464

RESUMO

Active gels play an important role in biology and in inspiring biomimetic active materials, due to their ability to change shape, size, and create their own morphology. We study a particular class of active gels, generated by polymerizing actin in the presence of cross-linkers and clusters of myosin as molecular motors, which exhibit large contractions. The relevant mechanics for these highly swollen gels is the result of the interplay between activity and liquid flow: gel activity yields a structural reorganization of the gel network and produces a flow of liquid that eventually exits from the gel boundary. This dynamics inherits lengthscales that are typical of the liquid flow processes. The analyses we present provide insights into the contraction dynamics, and they focus on the effects of the geometry on both gel velocity and fluid flow.

2.
Proc Natl Acad Sci U S A ; 121(2): e2309125121, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38175871

RESUMO

Living systems adopt a diversity of curved and highly dynamic shapes. These diverse morphologies appear on many length scales, from cells to tissues and organismal scales. The common driving force for these dynamic shape changes are contractile stresses generated by myosin motors in the cell cytoskeleton, that converts chemical energy into mechanical work. A good understanding of how contractile stresses in the cytoskeleton arise into different three-dimensional (3D) shapes and what are the shape selection rules that determine their final configurations is still lacking. To obtain insight into the relevant physical mechanisms, we recreate the actomyosin cytoskeleton in vitro, with precisely controlled composition and initial geometry. A set of actomyosin gel discs, intrinsically identical but of variable initial geometry, dynamically self-organize into a family of 3D shapes, such as domes and wrinkled shapes, without the need for specific preprogramming or additional regulation. Shape deformation is driven by the spontaneous emergence of stress gradients driven by myosin and is encoded in the initial disc radius to thickness aspect ratio, which may indicate shaping scalability. Our results suggest that while the dynamical pathways may depend on the detailed interactions between the different microscopic components within the gel, the final selected shapes obey the general theory of elastic deformations of thin sheets. Altogether, our results emphasize the importance for the emergence of active stress gradients for buckling-driven shape deformations and provide insights on the mechanically induced spontaneous shape transitions in contractile active matter, revealing potential shared mechanisms with living systems across scales.


Assuntos
Citoesqueleto de Actina , Actomiosina , Actomiosina/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto/metabolismo , Miosinas/metabolismo , Microtúbulos/metabolismo
3.
J Vis Exp ; (193)2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36971445

RESUMO

Cells can actively change their shapes and become motile, a property that depends on their ability to actively reorganize their internal structure. This feature is attributed to the mechanical and dynamic properties of the cell cytoskeleton, notably, the actomyosin cytoskeleton, which is an active gel of polar actin filaments, myosin motors, and accessory proteins that exhibit intrinsic contraction properties. The usually accepted view is that the cytoskeleton behaves as a viscoelastic material. However, this model cannot always explain the experimental results, which are more consistent with a picture describing the cytoskeleton as a poroelastic active material-an elastic network embedded with cytosol. Contractility gradients generated by the myosin motors drive the flow of the cytosol across the gel pores, which infers that the mechanics of the cytoskeleton and the cytosol are tightly coupled. One main feature of poroelasticity is the diffusive relaxation of stresses in the network, characterized by an effective diffusion constant that depends on the gel elastic modulus, porosity, and cytosol (solvent) viscosity. As cells have many ways to regulate their structure and material properties, our current understanding of how cytoskeleton mechanics and cytosol flow dynamics are coupled remains poorly understood. Here, an in vitro reconstitution approach is employed to characterize the material properties of poroelastic actomyosin gels as a model system for the cell cytoskeleton. Gel contraction is driven by myosin motor contractility, which leads to the emergence of a flow of the penetrating solvent. The paper describes how to prepare these gels and run experiments. We also discuss how to measure and analyze the solvent flow and gel contraction both at the local and global scales. The various scaling relations used for data quantification are given. Finally, the experimental challenges and common pitfalls are discussed, including their relevance to cell cytoskeleton mechanics.


Assuntos
Actomiosina , Citoesqueleto , Actomiosina/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto de Actina/metabolismo , Contração Muscular/fisiologia , Miosinas/metabolismo , Actinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...