Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biopolymers ; 115(2): e23557, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37341434

RESUMO

Chemokines are important immune system proteins, many of which mediate inflammation due to their function to activate and cause chemotaxis of leukocytes. An important anti-inflammatory strategy is therefore to bind and inhibit chemokines, which leads to the need for biophysical studies of chemokines as they bind various possible partners. Because a successful anti-chemokine drug should bind at low concentrations, techniques such as fluorescence anisotropy that can provide nanomolar signal detection are required. To allow fluorescence experiments to be carried out on chemokines, a method is described for the production of fluorescently labeled chemokines. First, a fusion-tagged chemokine is produced in Escherichia coli, then efficient cleavage of the N-terminal fusion partner is carried out with lab-produced enterokinase, followed by covalent modification with a fluorophore, mediated by the lab-produced sortase enzyme. This overall process reduces the need for expensive commercial enzymatic reagents. Finally, we utilize the product, vMIP-fluor, in binding studies with the chemokine binding protein vCCI, which has great potential as an anti-inflammatory therapeutic, showing a binding constant for vCCI:vMIP-fluor of 0.37 ± 0.006 nM. We also show how a single modified chemokine homolog (vMIP-fluor) can be used in competition assays with other chemokines and we report a Kd for vCCI:CCL17 of 14 µM. This work demonstrates an efficient method of production and fluorescent labeling of chemokines for study across a broad range of concentrations.


Assuntos
Quimiocinas CC , Enteropeptidase , Humanos , Quimiocinas CC/química , Quimiocinas CC/metabolismo , Quimiocinas/química , Quimiocinas/metabolismo , Inflamação , Anti-Inflamatórios
2.
Viruses ; 15(12)2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38140693

RESUMO

Although COVID-19 transmission has been reduced by the advent of vaccinations and a variety of rapid monitoring techniques, the SARS-CoV-2 virus itself has shown a remarkable ability to mutate and persist. With this long track record of immune escape, researchers are still exploring prophylactic treatments to curtail future SARS-CoV-2 variants. Specifically, much focus has been placed on the antiviral lectin Griffithsin in preventing spike protein-mediated infection via the hACE2 receptor (direct infection). However, an oft-overlooked aspect of SARS-CoV-2 infection is viral capture by attachment receptors such as DC-SIGN, which is thought to facilitate the initial stages of COVID-19 infection in the lung tissue (called trans-infection). In addition, while immune escape is dictated by mutations in the spike protein, coronaviral virions also incorporate M, N, and E structural proteins within the particle. In this paper, we explored how several structural facets of both the SARS-CoV-2 virion and the antiviral lectin Griffithsin can affect and attenuate the infectivity of SARS-CoV-2 pseudovirus. We found that Griffithsin was a better inhibitor of hACE2-mediated direct infection when the coronaviral M protein is present compared to when it is absent (possibly providing an explanation regarding why Griffithsin shows better inhibition against authentic SARS-CoV-2 as opposed to pseudotyped viruses, which generally do not contain M) and that Griffithsin was not an effective inhibitor of DC-SIGN-mediated trans-infection. Furthermore, we found that DC-SIGN appeared to mediate trans-infection exclusively via binding to the SARS-CoV-2 spike protein, with no significant effect observed when other viral proteins (M, N, and/or E) were present. These results provide etiological data that may help to direct the development of novel antiviral treatments, either by leveraging Griffithsin binding to the M protein as a novel strategy to prevent SARS-CoV-2 infection or by narrowing efforts to inhibit trans-infection to focus on DC-SIGN binding to SARS-CoV-2 spike protein.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2/metabolismo , Antivirais/farmacologia
3.
Viruses ; 15(9)2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37766307

RESUMO

The SARS-CoV-2 virion has shown remarkable resilience, capable of mutating to escape immune detection and re-establishing infectious capabilities despite new vaccine rollouts. Therefore, there is a critical need to identify relatively immutable epitopes on the SARS-CoV-2 virion that are resistant to future mutations the virus may accumulate. While hACE2 has been identified as the receptor that mediates SARS-CoV-2 susceptibility, it is only modestly expressed in lung tissue. C-type lectin receptors like DC-SIGN can act as attachment sites to enhance SARS-CoV-2 infection of cells with moderate or low hACE2 expression. We developed an easy-to-implement assay system that allows for the testing of SARS-CoV-2 trans-infection. Using our assay, we assessed how SARS-CoV-2 Spike S1-domain glycans and spike proteins from different strains affected the ability of pseudotyped lentivirions to undergo DC-SIGN-mediated trans-infection. Through our experiments with seven glycan point mutants, two glycan cluster mutants and four strains of SARS-CoV-2 spike, we found that glycans N17 and N122 appear to have significant roles in maintaining COVID-19's infectious capabilities. We further found that the virus cannot retain infectivity upon the loss of multiple glycosylation sites, and that Omicron BA.2 pseudovirions may have an increased ability to bind to other non-lectin receptor proteins on the surface of cells. Taken together, our work opens the door to the development of new therapeutics that can target overlooked epitopes of the SARS-CoV-2 virion to prevent C-type lectin-receptor-mediated trans-infection in lung tissue.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Mutação , Epitopos , Lectinas Tipo C/genética , Polissacarídeos
4.
Materials (Basel) ; 16(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37629837

RESUMO

The protein Griffithsin (Grft) is a lectin that tightly binds to high-mannose glycosylation sites on viral surfaces. This property allows Grft to potently inhibit many viruses, including HIV-1. The major route of HIV infection is through sexual activity, so an important tool for reducing the risk of infection would be a film that could be inserted vaginally or rectally to inhibit transmission of the virus. We have previously shown that silk fibroin can encapsulate, stabilize, and release various antiviral proteins, including Grft. However, for broad utility as a prevention method, it would be useful for an insertable film to adhere to the mucosal surface so that it remains for several days or weeks to provide longer-term protection from infection. We show here that silk fibroin can be formulated with adhesive properties using the nontoxic polymer hydroxypropyl methylcellulose (HPMC) and glycerol, and that the resulting silk scaffold can both adhere to biological surfaces and release Grft over the course of at least one week. This work advances the possible use of silk fibroin as an anti-viral insertable device to prevent infection by sexually transmitted viruses, including HIV-1.

5.
Heliyon ; 8(8): e10280, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35991981

RESUMO

Due to the immense societal and economic impact that the COVID-19 pandemic has caused, limiting the spread of SARS-CoV-2 is one of the most important priorities at this time. The global interconnectedness of the food industry makes it one of the biggest concerns for SARS-CoV-2 outbreaks. Although fomites are currently considered a low-risk route of transmission for SARS-CoV-2, new variants of the virus can potentially alter the transmission dynamics. In this study, we compared the survival rate of pseudotyped SARS-CoV-2 on plastic with some commonly used food samples (i.e., apple, strawberry, grapes, tomato, cucumber, lettuce, parsley, Brazil nut, almond, cashew, and hazelnut). The porosity level and the chemical composition of different food products affect the virus's stability and infectivity. Our results showed that tomato, cucumber, and apple offer a higher survival rate for the pseudotyped viruses. Next, we explored the effectiveness of ozone in deactivating the SARS-CoV-2 pseudotyped virus on the surface of tomato, cucumber, and apple. We found that the virus was effectively inactivated after being exposed to 15 ppm of ozone for 1 h under ambient conditions. SEM imaging revealed that while ozone exposure altered the wax layer on the surface of produce, it did not seem to damage the cells and their biological structures. The results of our study indicate that ozonated air can likely provide a convenient method of effectively disinfecting bulk food shipments that may harbour the SARS-CoV-2 virus.

6.
Biomed J ; 45(3): 439-453, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34311129

RESUMO

Chemokines are small proteins that are critical for immune function, being primarily responsible for the activation and chemotaxis of leukocytes. As such, many viruses, as well as parasitic arthropods, have evolved systems to counteract chemokine function in order to maintain virulence, such as binding chemokines, mimicking chemokines, or producing analogs of transmembrane chemokine receptors that strongly bind their targets. The focus of this review is the large group of chemokine binding proteins (CBP) with an emphasis on those produced by mammalian viruses. Because many chemokines mediate inflammation, these CBP could possibly be used pharmaceutically as anti-inflammatory agents. In this review, we summarize the structural properties of a diverse set of CBP and describe in detail the chemokine binding properties of the poxvirus-encoded CBP called vCCI (viral CC Chemokine Inhibitor). Finally, we describe the current and emerging capabilities of combining computational simulation, structural analysis, and biochemical/biophysical experimentation to understand, and possibly re-engineer, protein-protein interactions.


Assuntos
Proteínas de Transporte , Poxviridae , Animais , Proteínas de Transporte/metabolismo , Quimiocinas , Humanos , Mamíferos/metabolismo , Poxviridae/química , Poxviridae/metabolismo , Ligação Proteica , Proteínas Virais/química , Proteínas Virais/metabolismo
7.
Trends Biochem Sci ; 46(6): 433-434, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33752957

RESUMO

In a recent study, Dishman et al. resurrected ancestors of the metamorphic chemokine, XCL1, inferred through phylogenetics, and found that metamorphism arose in the XCL1 lineage ~150 million years ago. A zigzagging evolutionary path suggests that the metamorphic properties are adaptive and reveals three design principles that could be used for technological applications.


Assuntos
Quimiocinas C
8.
J Int AIDS Soc ; 23(10): e25628, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33073530

RESUMO

INTRODUCTION: The majority of new HIV infections occur through mucosal transmission. The availability of readily applicable and accessible platforms for anti-retroviral (ARV) delivery is critical for the prevention of HIV acquisition through sexual transmission in both women and men. There is a compelling need for developing new topical delivery systems that have advantages over the pills, gels and rings, which currently fail to guarantee protection against mucosal viral transmission in vulnerable populations due to lack of user compliance. The silk fibroin (SF) platform offers another option that may be better suited to individual circumstances and preferences to increase efficacy through user compliance. The objective of this study was to test safety and efficacy of SF for anti-HIV drug delivery to mucosal sites and for viral prevention. METHODS: We formulated a potent HIV inhibitor Griffithsin (Grft) in a mucoadhesive silk fibroin (SF) drug delivery platform and tested the application in a non-human primate model in vivo and a pre-clinical human cervical and colorectal tissue explant model. Both vaginal and rectal compartments were assessed in rhesus macaques (Mucaca mulatta) that received SF (n = 4), no SF (n = 7) and SF-Grft (n = 11). In this study, we evaluated the composition of local microbiota, inflammatory cytokine production, histopathological changes in the vaginal and rectal compartments and mucosal protection after ex vivo SHIV challenge. RESULTS: Effective Grft release and retention in mucosal tissues from the SF-Grft platform resulted in protection against HIV in human cervical and colorectal tissue as well as against SHIV challenge in both rhesus macaque vaginal and rectal tissues. Mucoadhesion of SF-Grft inserts did not cause any inflammatory responses or changes in local microbiota. CONCLUSIONS: We demonstrated that in vivo delivery of SF-Grft in rhesus macaques fully protects against SHIV challenge ex vivo after two hours of application and is safe to use in both the vaginal and rectal compartments. Our study provides support for the development of silk fibroin as a highly promising, user-friendly HIV prevention modality to address the global disparity in HIV infection.


Assuntos
Fármacos Anti-HIV/administração & dosagem , Fibroínas , Infecções por HIV/prevenção & controle , Lectinas/administração & dosagem , Lectinas de Plantas/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Animais , Fármacos Anti-HIV/análise , Fármacos Anti-HIV/farmacocinética , Materiais Biocompatíveis , Colo do Útero/virologia , Colo/virologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , HIV/efeitos dos fármacos , Humanos , Lectinas/análise , Lectinas/farmacocinética , Macaca mulatta , Microbiota/efeitos dos fármacos , Mucosa/química , Veículos Farmacêuticos , Lectinas de Plantas/análise , Lectinas de Plantas/farmacocinética , Reto/química , Reto/microbiologia , Reto/virologia , Vagina/química , Vagina/microbiologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-31611356

RESUMO

Griffithsin (Grft) is an antiviral lectin that has been shown to potently inhibit HIV-1 by binding high-mannose N-linked glycosylation sites on HIV-1 gp120. A key factor for Grft potency is glycosylation at N295 of gp120, which is directly adjacent to N332, a target glycan for an entire class of broadly neutralizing antibodies (bNAbs). Here, we unify previous work on the importance of other glycans to Grft potency against HIV-1 and Grft's role in mediating the conformational change of gp120 by mutating nearly every glycosylation site in gp120. In addition to a significant loss of Grft activity by the removal of glycosylation at N295, glycan absence at N332 or N448 was found to have moderate effects on Grft potency. Interestingly, in the absence of N295, Grft effectiveness could be improved by a mutation that results in the glycan at N448 shifting to N446, indicating that the importance of individual glycans may be related to their effect on glycosylation density. Grft's ability to alter the structure of gp120, exposing the CD4 binding site, correlated with the presence of glycosylation at N295 only in clade B strains, not clade C strains. We further demonstrate that Grft can rescue the activity of the bNAbs PGT121 and PGT126 in the event of a loss or a shift of glycosylation at N332, where the bNAbs suffer a drastic loss of potency. Despite targeting the same region, Grft in combination with PGT121 and PGT126 produced additive effects. This indicates that Grft could be an important combinational therapeutic.


Assuntos
Fármacos Anti-HIV/farmacologia , Anticorpos Amplamente Neutralizantes/administração & dosagem , Anticorpos Anti-HIV/administração & dosagem , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/efeitos dos fármacos , Lectinas de Plantas/farmacologia , Fármacos Anti-HIV/administração & dosagem , Sítios de Ligação , Terapia Combinada , Farmacorresistência Viral/genética , Glicosilação , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/terapia , Infecções por HIV/virologia , HIV-1/imunologia , HIV-1/metabolismo , Humanos , Técnicas In Vitro , Modelos Moleculares , Mutagênese Sítio-Dirigida , Lectinas de Plantas/administração & dosagem , Conformação Proteica/efeitos dos fármacos
10.
J Control Release ; 301: 1-12, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30876951

RESUMO

With almost 2 million new HIV infections worldwide each year, the prevention of HIV infection is critical for stopping the pandemic. The only approved form of pre-exposure prophylaxis is a costly daily pill, and it is recognized that several options will be needed to provide protection to the various affected communities around the world. In particular, many at-risk people would benefit from a prevention method that is simple to use and does not require medical intervention or a strict daily regimen. We show that silk fibroin protein can be formulated into insertable discs that encapsulate either an antibody (IgG) or the potent HIV inhibitor 5P12-RANTES. Several formulations were studied, including silk layering, water vapor annealing and methanol treatment to stabilize the protein cargo and impact the release kinetics over weeks. In the case of IgG, high concentrations were released over a short time using methanol treatment, with more sustained results with the use of water vapor annealing and layering during device fabrication. For 5P12-RANTES, sustained release was obtained for 31 days using water vapor annealing. Further, we show that the released inhibitor 5P12-RANTES was functional both in vitro and in ex vivo colorectal tissue. This work shows that silk fibroin discs can be developed into formidable tools to prevent HIV infection.


Assuntos
Quimiocinas CC/administração & dosagem , Fibroínas/administração & dosagem , Infecções por HIV/prevenção & controle , Imunoglobulina G/administração & dosagem , Linhagem Celular , Quimiocinas CC/química , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Liberação Controlada de Fármacos , Fibroínas/química , Humanos , Imunoglobulina G/química , Profilaxia Pré-Exposição
11.
Int J Mol Sci ; 18(8)2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28813018

RESUMO

Certain viruses have the ability to subvert the mammalian immune response, including interference in the chemokine system. Poxviruses produce the chemokine binding protein vCCI (viral CC chemokine inhibitor; also called 35K), which tightly binds to CC chemokines. To facilitate the study of vCCI, we first provide a protocol to produce folded vCCI from Escherichia coli (E. coli.) It is shown here that vCCI binds with unusually high affinity to viral Macrophage Inflammatory Protein-II (vMIP-II), a chemokine analog produced by the virus, human herpesvirus 8 (HHV-8). Fluorescence anisotropy was used to investigate the vCCI:vMIP-II complex and shows that vCCI binds to vMIP-II with a higher affinity than most other chemokines, having a Kd of 0.06 ± 0.006 nM. Nuclear magnetic resonance (NMR) chemical shift perturbation experiments indicate that key amino acids used for binding in the complex are similar to those found in previous work. Molecular dynamics were then used to compare the vCCI:vMIP-II complex with the known vCCI:Macrophage Inflammatory Protein-1ß/CC-Chemokine Ligand 4 (MIP-1ß/CCL4) complex. The simulations show key interactions, such as those between E143 and D75 in vCCI/35K and R18 in vMIP-II. Further, in a comparison of 1 µs molecular dynamics (MD) trajectories, vMIP-II shows more overall surface binding to vCCI than does the chemokine MIP-1ß. vMIP-II maintains unique contacts at its N-terminus to vCCI that are not made by MIP-1ß, and vMIP-II also makes more contacts with the vCCI flexible acidic loop (located between the second and third beta strands) than does MIP-1ß. These studies provide evidence for the basis of the tight vCCI:vMIP-II interaction while elucidating the vCCI:MIP-1ß interaction, and allow insight into the structure of proteins that are capable of broadly subverting the mammalian immune system.


Assuntos
Quimiocina CXCL2/química , Polarização de Fluorescência , Herpesvirus Humano 8/química , Simulação de Dinâmica Molecular , Complexos Multiproteicos/química , Vaccinia virus/química , Proteínas Virais/química , Quimiocina CXCL2/genética , Herpesvirus Humano 8/genética , Complexos Multiproteicos/genética , Estrutura Quaternária de Proteína , Vaccinia virus/genética , Proteínas Virais/genética
12.
ACS Biomater Sci Eng ; 3(8): 1654-1665, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-33225060

RESUMO

Topical microbicides have the potential to provide effective protection against sexual transmission of HIV. Challenges in developing microbicides include their application in resource-poor settings with high temperatures and a lack of refrigeration, and low user adherence to a rigorous daily regimen. Several protein-based HIV inhibitors show great promise as microbicides, being highly specific and not expected to lead to resistance that would affect the efficacy of current antiretroviral treatments. We show that four potent protein HIV inhibitors, 5P12-RANTES, 5P12-RANTES-L-C37, Grft, and Grft-L-C37 can be formulated into silk fibroin (SF) disks and remain functional for 14 months at 25, 37, and 50 °C. These HIV inhibitor-encapsulated SF disks show excellent inhibition properties in PBMC and in human colorectal and cervical tissue explants, and do not induce inflammatory cytokine secretion. Further, the SF provides a mechanically robust matrix with versatile material formats for this type of application. Finally, a formulation was developed to allow sustained release of functional Grft for 4 weeks at levels sufficient to inhibit HIV transmission. This work establishes the suitability of HIV inhibitor-encapsulated SF disks as topical HIV microbicides that can be further developed to allow easy insertion for extended protection.

13.
Structure ; 22(11): 1550-2, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25438668

RESUMO

In an important addition to the chemokine field, Millard and colleagues, in this issue of Structure, report the first structure of a CC chemokine in complex with a sulfated peptide derived from its receptor.


Assuntos
Quimiocina CCL11/química , Quimiocina CCL11/genética , Receptores CCR3/química , Receptores CCR3/metabolismo , Tirosina/análogos & derivados , Humanos
14.
J Biol Chem ; 289(10): 6592-6603, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24482230

RESUMO

Chemokines play important roles in the immune system, not only recruiting leukocytes to the site of infection and inflammation but also guiding cell homing and cell development. The soluble poxvirus-encoded protein viral CC chemokine inhibitor (vCCI), a CC chemokine inhibitor, can bind to human CC chemokines tightly to impair the host immune defense. This protein has no known homologs in eukaryotes and may represent a potent method to stop inflammation. Previously, our structure of the vCCI·MIP-1ß (macrophage inflammatory protein-1ß) complex indicated that vCCI uses negatively charged residues in ß-sheet II to interact with positively charged residues in the MIP-1ß N terminus, 20s region and 40s loop. However, the interactions between vCCI and other CC chemokines have not yet been fully explored. Here, we used NMR and fluorescence anisotropy to study the interaction between vCCI and eotaxin-1 (CCL11), a CC chemokine that is an important factor in the asthma response. NMR results reveal that the binding pattern is very similar to the vCCI·MIP-1ß complex and suggest that electrostatic interactions provide a major contribution to binding. Fluorescence anisotropy results on variants of eotaxin-1 further confirm the critical roles of the charged residues in eotaxin-1. In addition, the binding affinity between vCCI and other wild type CC chemokines, MCP-1 (monocyte chemoattractant protein-1), MIP-1ß, and RANTES (regulated on activation normal T cell expressed and secreted), were determined as 1.1, 1.2, and 0.22 nm, respectively. To our knowledge, this is the first work quantitatively measuring the binding affinity between vCCI and multiple CC chemokines.


Assuntos
Quimiocina CCL11/imunologia , Proteínas Virais/imunologia , Fatores de Virulência/imunologia , Sequência de Aminoácidos , Quimiocina CCL11/química , Quimiocina CCL11/genética , Quimiocina CCL2/química , Quimiocina CCL2/imunologia , Quimiocina CCL4/química , Quimiocina CCL4/imunologia , Quimiocina CCL5/química , Quimiocina CCL5/imunologia , Humanos , Inflamação/imunologia , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica/imunologia , Estrutura Secundária de Proteína , Proteínas Virais/química , Fatores de Virulência/química
15.
Antimicrob Agents Chemother ; 57(8): 3976-89, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23752505

RESUMO

Griffithsin (Grft) is a protein lectin derived from red algae that tightly binds the HIV envelope protein gp120 and effectively inhibits virus infection. This inhibition is due to the binding by Grft of high-mannose saccharides on the surface of gp120. Grft has been shown to be a tight dimer, but the role of the dimer in Grft's anti-HIV function has not been fully explored. To investigate the role of the Grft dimer in anti-HIV function, an obligate dimer of Grft was designed by expressing the protein with a peptide linker between the two subunits. This "Grft-linker-Grft" is a folded protein dimer, apparently nearly identical in structural properties to the wild-type protein. A "one-armed" obligate dimer was also designed (Grft-linker-Grft OneArm), with each of the three carbohydrate binding sites of one subunit mutated while the other subunit remained intact. While both constructed dimers retained the ability to bind gp120 and the viral surface, Grft-linker-Grft OneArm was 84- to 1,010-fold less able to inhibit HIV than wild-type Grft, while Grft-linker-Grft had near-wild-type antiviral potency. Furthermore, while the wild-type protein demonstrated the ability to alter the structure of gp120 by exposing the CD4 binding site, Grft-linker-Grft OneArm largely lost this ability. In experiments to investigate gp120 shedding, it was found that Grft has different effects on gp120 shedding for strains from subtype B and subtype C, and this might correlate with Grft function. Evidence is provided that the dimer form of Grft is critical to the function of this protein in HIV inhibition.


Assuntos
Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/efeitos dos fármacos , Lectinas de Plantas/farmacologia , Fármacos Anti-HIV/farmacologia , Sítios de Ligação , Antígenos CD4/metabolismo , Linhagem Celular Tumoral , Humanos , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Multimerização Proteica , Receptores de HIV/metabolismo , Internalização do Vírus/efeitos dos fármacos , Eliminação de Partículas Virais
16.
PLoS One ; 8(5): e64132, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23741304

RESUMO

BACKGROUND: The glycan-targeting C-type DC-SIGN lectin receptor is implicated in the transmission of the human immunodeficiency virus (HIV) by binding the virus and transferring the captured HIV-1 to CD4(+) T lymphocytes. Carbohydrate binding agents (CBAs) have been reported to block HIV-1 infection. We have now investigated the potent mannose-specific anti-HIV CBA griffithsin (GRFT) on its ability to inhibit the capture of HIV-1 to DC-SIGN, its DC-SIGN-directed transmission to CD4(+) T-lymphocytes and the role of the three carbohydrate-binding sites (CBS) of GRFT in these processes. FINDINGS: GRFT inhibited HIV-1(IIIB) infection of CEM and HIV-1(NL4.3) infection of C8166 CD4(+) T-lymphocytes at an EC50 of 0.059 and 0.444 nM, respectively. The single mutant CBS variants of GRFT (in which a key Asp in one of the CBS was mutated to Ala) were about ∼20 to 60-fold less potent to prevent HIV-1 infection and ∼20 to 90-fold less potent to inhibit syncytia formation in co-cultures of persistently HIV-1 infected HuT-78 and uninfected C8166 CD4(+) T-lymphocytes. GRFT prevents DC-SIGN-mediated virus capture and HIV-1 transmission to CD4(+) T-lymphocytes at an EC50 of 1.5 nM and 0.012 nM, respectively. Surface plasmon resonance (SPR) studies revealed that wild-type GRFT efficiently blocked the binding between DC-SIGN and immobilized gp120, whereas the point mutant CBS variants of GRFT were ∼10- to 15-fold less efficient. SPR-analysis also demonstrated that wild-type GRFT and its single mutant CBS variants have the capacity to expel bound gp120 from the gp120-DC-SIGN complex in a dose dependent manner, a property that was not observed for HHA, another mannose-specific potent anti-HIV-1 CBA. CONCLUSION: GRFT is inhibitory against HIV gp120 binding to DC-SIGN, efficiently prevents DC-SIGN-mediated transfer of HIV-1 to CD4(+) T-lymphocytes and is able to expel gp120 from the gp120-DC-SIGN complex. Functionally intact CBS of GRFT are important for the optimal action of GRFT.


Assuntos
Fármacos Anti-HIV/química , Linfócitos T CD4-Positivos/efeitos dos fármacos , Moléculas de Adesão Celular/antagonistas & inibidores , Proteína gp120 do Envelope de HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Lectinas Tipo C/antagonistas & inibidores , Lectinas de Plantas/química , Receptores de Superfície Celular/antagonistas & inibidores , Fármacos Anti-HIV/farmacologia , Sítios de Ligação , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Células Cultivadas , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/prevenção & controle , Infecções por HIV/transmissão , HIV-1/crescimento & desenvolvimento , HIV-1/metabolismo , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Lectinas de Plantas/farmacologia , Ligação Proteica , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Internalização do Vírus/efeitos dos fármacos
17.
FEBS Lett ; 587(7): 860-6, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23454641

RESUMO

The native HIV-1 Env complex consists of a gp120/gp41 trimer, but surface plasmon resonance (SPR)-directed binding studies for gp120-binding agents were almost exclusively performed on monomeric gp120. SPR-directed binding kinetics of monomeric gp120 and trimeric gp140 were investigated for a broad variety of envelope (Env)-binding agents. Similar kinetics for carbohydrate-binding agents (CBAs), the antibody 2G12 and sCD4 were observed, irrespective of the oligomeric state of gp120 that either contain the native mixture of complex and high-mannose N-glycans or that contain exclusively oligomannose N-glycans. The generally comparable kinetic properties of CBA, 2G12 and sCD4 binding to monomeric gp120 and trimeric gp140 indicate that monomeric gp120 is a good surrogate molecule for native HIV-1 Env trimer to investigate the binding affinities of Env-binding compounds.


Assuntos
Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , HIV-1/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Anticorpos Monoclonais/metabolismo , Proteínas de Bactérias/metabolismo , Ligação Competitiva , Western Blotting , Anticorpos Amplamente Neutralizantes , Células HEK293 , Anticorpos Anti-HIV , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/genética , HIV-1/genética , Humanos , Cinética , Manose/metabolismo , Lectinas de Plantas/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica , Multimerização Proteica , Ressonância de Plasmônio de Superfície , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
18.
Mol Pharm ; 9(9): 2613-25, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22827601

RESUMO

Griffithsin (GRFT) is a lectin that has been shown to inhibit HIV infection by binding to high mannose glycan structures on the surface of gp120, and it is among the most potent HIV entry inhibitors reported so far. However, important biochemical details on the antiviral mechanism of GRFT action remain unexplored. In order to understand the role of the three individual carbohydrate-binding sites (CBS) in GRFT, mutations were made at each site (D30A, D70A, and D112A), and the resulting mutants were investigated. NMR studies revealed that each GRFT variant was folded but showed significant peak movement on the carbohydrate-binding face of the protein. The wild-type and each point mutant protein appeared as tight dimers with a K(d) below 4.2 µM. Mutation of any individual CBS on GRFT reduced binding of the protein to mannose, and ELISA assays revealed a partial loss of ability of each GRFT point mutant to bind gp120, with a near-complete loss of binding by the triple mutant D30A/D70A/D112A GRFT. A more quantitative surface plasmon resonance (SPR) examination showed a rather small loss of binding to gp120 for the individual GRFT point mutants (K(D): 123 to 245 pM range versus 73 pM for wild-type GRFT), but dramatic loss of the triple mutant to bind gp120 derived from R5 and X4 strains (K(D) > 12 nM). In contrast to the 2- to 3-fold loss of binding to gp120, the single CBS point mutants of GRFT were significantly less able to inhibit viral infection, exhibiting a 26- to 1900-fold loss of potency, while the triple mutant was at least 875-fold less effective against HIV-1 infection. The disparity between HIV-1 gp120 binding ability and HIV inhibitory potency for these GRFT variants indicates that gp120 binding and virus neutralization do not necessarily correlate, and suggests a mechanism that is not based on simple gp120 binding.


Assuntos
Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Carboidratos/química , HIV-1/efeitos dos fármacos , Lectinas de Plantas/química , Lectinas de Plantas/farmacologia , Sítios de Ligação , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Infecções por HIV/metabolismo , HIV-1/genética , HIV-1/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Manose/genética , Manose/metabolismo , Modelos Moleculares , Mutação
19.
J Biol Chem ; 286(32): 28370-81, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21659523

RESUMO

Blocking HIV-1 cell entry has long been a major goal of anti-HIV drug development. Here, we report a successful design of two highly potent chimeric HIV entry inhibitors composed of one CCR5-targeting RANTES (regulated on activation normal T cell expressed and secreted) variant (5P12-RANTES or 5P14-RANTES (Gaertner, H., Cerini, F., Escola, J. M., Kuenzi, G., Melotti, A., Offord, R., Rossitto-Borlat, I., Nedellec, R., Salkowitz, J., Gorochov, G., Mosier, D., and Hartley, O. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 17706-17711)) linked to a gp41 fusion inhibitor, C37. Chimeric inhibitors 5P12-linker-C37 and 5P14-linker-C37 showed extremely high antiviral potency in single cycle and replication-competent viral assays against R5-tropic viruses, with IC(50) values as low as 0.004 nm. This inhibition was somewhat strain-dependent and was up to 100-fold better than the RANTES variant alone or in combination with unlinked C37. The chimeric inhibitors also fully retained the antiviral activity of C37 against X4-tropic viruses, and this inhibition can be further enhanced significantly if the target cell co-expresses CCR5 receptor. On human peripheral blood mononuclear cells, the inhibitors showed very strong inhibition against R5-tropic Ba-L strain and X4-tropic IIIB strain, with IC(50) values as low as 0.015 and 0.44 nm, which are 45- and 16-fold better than the parent inhibitors, respectively. A clear delivery mechanism requiring a covalent linkage between the two segments of the chimera was observed and characterized. Furthermore, the two chimeric inhibitors are fully recombinant and are easily produced at low cost. These attributes make them excellent candidates for anti-HIV microbicides. The results of this study also suggest a potent approach for optimizing existing HIV entry inhibitors or designing new inhibitors.


Assuntos
Inibidores da Fusão de HIV/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1/fisiologia , Peptídeos/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Internalização do Vírus/efeitos dos fármacos , Inibidores da Fusão de HIV/química , Infecções por HIV/metabolismo , Células HeLa , Humanos , Peptídeos/química , Receptores CCR5/metabolismo , Proteínas Recombinantes de Fusão/química , Tropismo Viral/efeitos dos fármacos
20.
Antimicrob Agents Chemother ; 55(1): 264-75, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20956603

RESUMO

The development of an anti-HIV microbicide is critical in the fight against the spread of HIV. It is shown here that the covalent linking of compounds that bind gp120 with compounds that bind gp41 can inhibit HIV entry even more potently than individual inhibitors or noncovalent combinations. The most striking example involves griffithsin, a potent HIV inhibitor that binds to the surface of HIV gp120. While griffithsin inhibits HIV Env-mediated fusion in a CCR5-tropic cell-cell fusion assay with a 50% inhibitory concentration (IC(50)) of 1.31 ± 0.87 nM and the gp41-binding peptide C37 shows an IC(50) of 18.2 ± 7.6 nM, the covalently linked combination of griffithsin with C37 (Griff37) has an IC(50) of 0.15 ± 0.05 nM, exhibiting a potency 8.7-fold greater than that of griffithsin alone. Similarly, in CXCR4-tropic cell-cell fusion assays, Griff37 is 5.2-fold more potent than griffithsin alone. In viral assays, both griffithsin and Griff37 inhibit HIV replication at midpicomolar levels, but the linked compound Griff37 is severalfold more potent than griffithsin alone against both CCR5- and CXCR4-tropic virus strains. Another example of this strategy is the covalently linked combination of peptide C37 with a variant of the gp120-binding peptide CD4M33 (L. Martin et al., Nat. Biotechnol. 21:71-76, 2003). Also, nuclear magnetic resonance (NMR) spectra for several of these compounds are shown, including, to our knowledge, the first published NMR spectrum for griffithsin.


Assuntos
Proteínas de Algas/química , Proteínas de Algas/farmacologia , Antivirais/farmacologia , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , HIV-1/efeitos dos fármacos , HIV-1/metabolismo , Lectinas/química , Lectinas/farmacologia , Peptídeos/farmacologia , Antivirais/síntese química , Antivirais/química , Linhagem Celular , Linhagem Celular Tumoral , Células HeLa , Humanos , Peptídeos/síntese química , Peptídeos/química , Lectinas de Plantas , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...