Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 144: 109234, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984615

RESUMO

Viral haemorrhagic septicaemia virus (VHSV) is one of the highly pathogenic virus, which causes viral haemorrhagic septicaemia disease in both marine and freshwater fish. Micro RNA-155 (miRNA-155) is a multifunctional small non-coding RNA and it involves regulation of immune responses during viral infection. In this study, dre-miR-155 mimics were encapsulated into chitosan nanoparticles (CNPs). Resulted encapsulated product (miR-155-CNPs) was investigated for its immunomodulation role in zebrafish during experimentally challenged VHSV infection. Successful encapsulation of dre-miR-155 mimics into CNPs was confirmed through average nanoparticle (NPs) size (341.45 ± 10.00 nm), increased encapsulation efficiency percentage (98.80%), bound dre-miR-155 with chitosan, sustained release in vitro (up to 40%), and the integrity of RNA. Overexpressed miR-155 was observed in gills, muscle, and kidney tissues (5.42, 19.62, and 140.72-folds, respectively) after intraperitoneal delivery of miR-155-CNPs into zebrafish upon VHSV infection (miR-155-CNPs + VHSV). The miR-155-CNPs + VHSV infected fish had the highest cumulative survival (85%), which was associated with low viral copy numbers. The miR-155-overexpressing fish showed significantly decreased expression of ifnγ, irf2bpl, irf9, socs1a, il10, and caspase3, compared to that of the miR-155 inhibitor + VHSV infected fish group. In contrast, il1ß, tnfα, il6, cd8a, and p53 expressions were upregulated in miR-155-overexpressed zebrafish compared to that of the control. The overall findings indicate the successful delivery of dre-miR-155 through miR-155-CNPs that enabled restriction of VHSV infection in zebrafish presumably by modulating immune gene expression.


Assuntos
Quitosana , Doenças dos Peixes , Septicemia Hemorrágica Viral , MicroRNAs , Nanopartículas , Novirhabdovirus , Animais , Peixe-Zebra , Imunidade , Novirhabdovirus/fisiologia , MicroRNAs/genética
2.
Fish Shellfish Immunol ; 110: 23-34, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33378697

RESUMO

Streptococcus parauberis is a pathogenic gram-positive bacterium that causes streptococcosis infection in fish. Since S. parauberis is becoming resistant to multiple antibiotics, the development of alternatives, such as antimicrobial peptides, has gained great attention. Octominin, derived from the defense protein of Octopus minor, showed a significant antimicrobial activity against multidrug resistance S. parauberis, with a minimum inhibitory concentration (MIC) and a minimum bactericidal concentration (MBC) of 50 and 100 µg/mL, respectively. Furthermore, time-kill kinetics, agar diffusion, and bacterial viability assays confirmed the concentration-dependent antibacterial activity of Octominin against S. parauberis. Field emission scanning electron microscopy analysis showed morphological and ultra-structural changes in S. parauberis upon Octominin treatment. Moreover, Octominin treatment demonstrated changes in membrane permeability, induced reactive oxygen species (ROS), and its binding ability to genomic DNA, suggesting its strong bactericidal activity with multiple modes of action. We confirmed the inhibition of biofilm formation and the eradication of existing biofilms in a concentration-dependent manner. Additionally, Octominin on S. parauberis at transcriptional level exhibited downregulation of membrane formation (pgsA and cds1), DNA repairing (recF), biofilm formation (pgaB and epsF) genes, while upregulation of ROS detoxification (sodA) and DNA protecting (ahpF) related genes. An in vivo study confirmed a significantly (P < 0.05) higher relative percentage survival in Octominin-treated larval zebrafish exposed to S. parauberis (93.3%) compared to the control group (20.0%). Collectively, our results confirm that Octominin could be a potential antibacterial and anti-biofilm agent against S. parauberis.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biofilmes/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Streptococcus/efeitos dos fármacos , Animais , Farmacorresistência Bacteriana Múltipla , Doenças dos Peixes/prevenção & controle , Testes de Sensibilidade Microbiana/veterinária , Microscopia Eletrônica de Varredura , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/veterinária , Streptococcus/fisiologia , Streptococcus/ultraestrutura
3.
Fish Shellfish Immunol ; 106: 898-909, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32889099

RESUMO

MicroRNAs (miRNAs) constitute a group of small non-coding RNAs (~22 nucleotides) and one of their main functions is to regulate the immune responses. Gram-positive bacterium, Streptococcus parauberis is the main causative agent of "Streptococcosis" in wide range of fish species. In this study, we performed high throughput sequencing analysis to identify the miRNA profile against S. parauberis infection in the spleen of zebrafish (Danio rerio). Overall, 349 known and 151 novel miRNAs were discovered. Among them, 12 known miRNAs (dre-miR-34b, dre-miR-135a, dre-miR-200b-5p, dre-miR-146b, dre-miR-31, dre-miR-17a-3p, dre-miR-222a-3p, dre-miR-731, dre-miR-301b-3p and dre-miR-30a-3p) and 9 novel miRNAs were differentially expressed (DE) in the spleen of S. parauberis challenged zebrafish. The identified 12 DE miRNAs were predicted to regulate 721 target genes. We confirmed the miRNA expression results by validating selected known and novel DE miRNAs using qRT-PCR. Gene Ontology (GO), Kyoto Encyclopedia of Genes (KEGG) pathway analysis and miRNA-mRNA interactions implies that specific target genes of DE miRNAs are associated with immune responses. The enriched pathways included Toll-like receptor (TLR), C-type lectin, NOD-like receptor, and RIG-I-like receptor signaling pathways, etc. Especially, dre-miR-200b-5p, dre-miR-146b, dre-miR-731, dre-miR-222a-3p, and dre-miR-34b were able to target potential immune-related genes such as il10, irak1, traf6, hspa8 and ikbke upon S. parauberis challenge. Thus, overall results could lay a foundation to understand the underlying immune regulatory role of miRNAs in response to pathogenic S. parauberis infection in teleosts.


Assuntos
Doenças dos Peixes/genética , MicroRNAs/imunologia , Infecções Estreptocócicas/genética , Peixe-Zebra/genética , Animais , Baço/imunologia , Baço/microbiologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/veterinária , Streptococcus , Peixe-Zebra/imunologia , Peixe-Zebra/microbiologia
4.
Mar Drugs ; 18(3)2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32245246

RESUMO

This study evaluated the modulation of gut microbiota, immune responses, and gut morphometry in C57BL/6 mice, upon oral administration of S. maxima-derived modified pectin (SmP, 7.5 mg/mL) and pectin nanoparticles (SmPNPs; 7.5 mg/mL). Metagenomics analysis was conducted using fecal samples, and mice duodenum and jejunum were used for analyzing the immune response and gut morphometry, respectively. The results of metagenomics analysis revealed that the abundance of Bacteroidetes in the gut increased in response to both modified SmP and SmPNPs (75%) as compared with that in the control group (66%), while that of Firmicutes decreased in (20%) as compared with that in the control group (30%). The mRNA levels of mucin, antimicrobial peptide, and antiviral and gut permeability-related genes in the duodenum were significantly (p < 0.05) upregulated (> 2-fold) upon modified SmP and SmPNPs feeding. Protein level of intestinal alkaline phosphatase was increased (1.9-fold) in the duodenum of modified SmPNPs feeding, evidenced by significantly increased goblet cell density (0.5 ± 0.03 cells/1000 µm2) and villi height (352 ± 10 µm). Our results suggest that both modified SmP and SmPNPs have the potential to modulate gut microbial community, enhance the expression of immune related genes, and improve gut morphology.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Microalgas/química , Nanopartículas/administração & dosagem , Pectinas/administração & dosagem , Prebióticos/administração & dosagem , Spirulina/química , Animais , Peptídeos Catiônicos Antimicrobianos/análise , Peptídeos Catiônicos Antimicrobianos/metabolismo , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Imunidade Inata/efeitos dos fármacos , Imunidade nas Mucosas/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Masculino , Metagenômica , Camundongos , Modelos Animais , Mucinas/análise , Mucinas/metabolismo , Pectinas/isolamento & purificação
5.
Braz J Microbiol ; 51(3): 931-937, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32067211

RESUMO

This study was aimed to understand the expression of miR-146a in zebrafish (Danio rerio) and its role in regulating immune responses during Aeromonas hydrophila and Edwardsiella piscicida infections. The miR-146a expression was observed from the 1-h post fertilization (hpf) stage and gradually increased up to the early larval stage of zebrafish. The ubiquitous expression of miR-146a was detected in all tested tissues, with the highest level in gills. The expression of miR-146a was significantly increased in larvae when exposed to E. piscicida infection at 24 and 48 h post exposure (hpe). Intraperitoneally (i.p.) injected A. hydrophila and E. piscicida into adult zebrafish showed significant upregulation of miR-146a in gills. Furthermore, immune-related genes, toll-like receptor, tlr-4, transducing signaling pathway molecules, traf-6 and myd88 (bacteria-infected larvae and adults), transcription factor relA and mcp-1b (bacteria-infected adults), pro-inflammatory, il-6 (A. hydrophila-exposed larvae) and mmp-9 (bacteria-exposed larvae) were significantly repressed. In contrast, il-1ß, tnf-α, cxcl-18b, and ccl-34a.4 were induced in both bacteria-challenged larvae and adults. Based on the results, it is suggested that endogenous miR-146a could act as an infection inducible miRNA in zebrafish upon A. hydrophila and E. piscicida infections; also, it could potentially regulate the immune responses in zebrafish.


Assuntos
Aeromonas hydrophila/fisiologia , Edwardsiella/fisiologia , Doenças dos Peixes/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , MicroRNAs/imunologia , Animais , Doenças dos Peixes/genética , Doenças dos Peixes/microbiologia , Regulação da Expressão Gênica , Infecções por Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Imunidade/genética , Estágios do Ciclo de Vida/genética , MicroRNAs/genética , Peixe-Zebra
6.
Fish Shellfish Immunol ; 94: 558-565, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31546036

RESUMO

In this study, we demonstrate the enhanced disease resistance and positive immunomodulation of novel pectin isolated from Spirulina maxima (SmP) in zebrafish model. Zebrafish larvae exposed to SmP had significantly (p < 0.05) higher cumulative percent survival (CPS) at 25 (44.0%) and 50 µg/mL (67.0%) against Edwardsiella piscicida compared to the control. However, upon Aeromonas hydrophila challenge, SmP exposed larvae at 50 µg/mL had slightly higher CPS (33.3%) compared to control group (26.7%). SmP supplemented zebrafish exhibited the higher CPS against E. piscicida (93.3%) and A. hydrophila (60.0%) during the early stage of post-infection (<18 hpi). qRT-PCR results demonstrated that exposing (larvae) and feeding (adults) of SmP, drive the modulation of a wide array of immune response genes. In SmP exposed larvae, up-regulation of the antimicrobial enzyme (lyz: 3.5-fold), mucin (muc5.1: 2.84, muc5.2: 2.11 and muc5.3: 2.40-fold), pro-inflammatory cytokines (il1ß: 1.79-fold) and anti-oxidants (cat: 2.87 and sod1: 1.82-fold) were identified. In SmP fed adult zebrafish (gut) showed >2-fold induced pro-inflammatory cytokine (il1ß) and chemokines (cxcl18b, ccl34a.4 and ccl34b.4). Overall results confirmed the positive modulation of innate immune responses in larval stage and it could be the main reason for developing disease resistance against E. piscicida and A. hydrophila. Thus, non-toxic, natural and biodegradable SmP could be considered as the potential immunomodulatory agent for sustainable aquaculture.


Assuntos
Cianobactérias/química , Resistência à Doença/efeitos dos fármacos , Doenças dos Peixes/imunologia , Imunidade Inata/efeitos dos fármacos , Pectinas/metabolismo , Peixe-Zebra/metabolismo , Aeromonas hydrophila/fisiologia , Ração Animal/análise , Animais , Proteínas de Bactérias/administração & dosagem , Proteínas de Bactérias/metabolismo , Dieta/veterinária , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/metabolismo , Suplementos Nutricionais/análise , Edwardsiella/fisiologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Pectinas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...