Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int J Dev Biol ; 62(11-12): 807-818, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30604850

RESUMO

Neural circuit formation requires the intricate orchestration of multiple developmental events including cell fate specification, cell migration, axon guidance, dendritic growth, synaptic target selection, and synaptogenesis. The HOX proteins are well-known transcriptional regulators that control embryonic development. Investigations into their action in the vertebrate central nervous system have demonstrated pivotal roles in specifying neural subpopulations, but also in several successive steps required for the assembly of neuronal circuitry, such as neuron migration, axon growth and pathfinding and synaptic target selection. Several lines of evidence suggest that the HOX transcription factors could also regulate synaptogenesis processes even after the process of axonal and dendritic guidance has concluded. Here we will review the current data on HOX proteins in neural circuit formation in order to evaluate their potential roles in establishing neuronal connectivity with specific emphasis on synapse formation and maturation.


Assuntos
Movimento Celular/genética , Genes Homeobox , Neurogênese/genética , Sinapses/genética , Animais , Axônios/fisiologia , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Neurônios/fisiologia
3.
Front Mol Neurosci ; 10: 369, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29187810

RESUMO

Hoxa5 is a member of the Hox gene family that plays critical roles in successive steps of the central nervous system formation during embryonic and fetal development. In the mouse, Hoxa5 was recently shown to be expressed in the medulla oblongata and the pons from fetal stages to adulthood. In these territories, Hoxa5 transcripts are enriched in many precerebellar neurons and several nuclei involved in autonomic functions, while the HOXA5 protein is detected mainly in glutamatergic and GABAergic neurons. However, whether HOXA5 is functionally required in these neurons after birth remains unknown. As a first approach to tackle this question, we aimed at determining the molecular programs downstream of the HOXA5 transcription factor in the context of the postnatal brainstem. A comparative transcriptomic analysis was performed in combination with gene expression localization, using a conditional postnatal Hoxa5 loss-of-function mouse model. After inactivation of Hoxa5 at postnatal days (P)1-P4, we established the transcriptome of the brainstem from P21 Hoxa5 conditional mutants using RNA-Seq analysis. One major finding was the downregulation of several genes associated with synaptic function in Hoxa5 mutant specimens including different actors involved in glutamatergic synapse, calcium signaling pathway, and GABAergic synapse. Data were confirmed and extended by reverse transcription quantitative polymerase chain reaction analysis, and the expression of several HOXA5 candidate targets was shown to co-localize with Hoxa5 transcripts in precerebellar nuclei. Together, these new results revealed that HOXA5, through the regulation of key actors of the glutamatergic/GABAergic synapses and calcium signaling, might be involved in synaptogenesis, synaptic transmission, and synaptic plasticity of the cortico-ponto-cerebellar circuitry in the postnatal brainstem.

4.
J Comp Neurol ; 525(5): 1155-1175, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27650319

RESUMO

Hoxa5 is a member of the Hox gene family, which plays critical roles in successive steps of the central nervous system formation during embryonic and fetal development. Hoxa5 expression in the adult mouse brain has been reported, suggesting that this gene may be functionally required in the brain after birth. To provide further insight into the Hoxa5 expression pattern and potential functions in the brain, we have characterized its neuroanatomical profile from embryonic stages to adulthood. While most Hox mapping studies have been based solely on transcript analysis, we extended our analysis to HOXA5 protein localization in adulthood using specific antibodies. Our results show that Hoxa5 expression appears in the most caudal part of the hindbrain at fetal stages, where it is maintained until adulthood. In the medulla oblongata and pons, we detected Hoxa5 expression in many precerebellar neurons and in several nuclei implicated in the control of autonomic functions. In these territories, the HOXA5 protein is present solely in neurons, specifically in γ-aminobutyric acid (GABA)ergic, glutamatergic, and catecholaminergic neurons. Finally, we also detected Hoxa5 transcripts, but not the HOXA5 protein, in the thalamus and the cortex, from postnatal stages to adult stages, and in the cerebellum at adulthood. We provide evidence that some larger variants of Hoxa5 transcripts are present in these territories. Our mapping analysis allowed us to build hypotheses regarding HOXA5 functions in the nervous system after birth, such as a potential role in the establishment and refinement/plasticity of precerebellar circuits during postnatal and adult life. J. Comp. Neurol. 525:1155-1175, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Proteínas de Homeodomínio/biossíntese , Neurogênese/fisiologia , Fosfoproteínas/biossíntese , Envelhecimento , Animais , Western Blotting , Encéfalo/embriologia , Feminino , Imuno-Histoquímica , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Reação em Cadeia da Polimerase , Fatores de Transcrição
5.
Brain Struct Funct ; 221(3): 1223-43, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25527350

RESUMO

Hox proteins are key regulators of animal development, providing positional identity and patterning information to cells along the rostrocaudal axis of the embryo. Although their embryonic expression and function are well characterized, their presence and biological importance in adulthood remains poorly investigated. We provide here the first detailed quantitative and neuroanatomical characterization of the expression of the 39 Hox genes in the adult mouse brain. Using RT-qPCR we determined the expression of 24 Hox genes mainly in the brainstem of the adult brain, with low expression of a few genes in the cerebellum and the forebrain. Using in situ hybridization (ISH) we have demonstrated that expression of Hox genes is maintained in territories derived from the early segmental Hox expression domains in the hindbrain. Indeed, we show that expression of genes belonging to paralogy groups PG2-8 is maintained in the hindbrain derivatives at adulthood. The spatial colinearity, which characterizes the early embryonic expression of Hox genes, is still observed in sequential antero-posterior boundaries of expression. Moreover, the main mossy and climbing fibres precerebellar nuclei express PG2-8 Hox genes according to their migration origins. Second, ISH confirms the presence of Hox gene transcripts in territories where they are not detected during development, suggesting neo-expression in these territories in adulthood. Within the forebrain, we have mapped Hoxb1, Hoxb3, Hoxb4, Hoxd3 and Hoxa5 expression in restricted areas of the sensory cerebral cortices as well as in specific thalamic relay nuclei. Our data thus suggest a requirement of Hox genes beyond their role of patterning genes, providing a new dimension to their functional relevance in the central nervous system.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Neurônios/metabolismo , Animais , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma
6.
Transgenic Res ; 24(6): 1065-77, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26395370

RESUMO

Temporal control of site-specific recombination is commonly achieved by using a tamoxifen-inducible form of Cre or Flp recombinases. Although powerful protocols of induction have been developed for gene inactivation at adult stages or during embryonic development, induction of recombination at late gestational or early postnatal stages is still difficult to achieve. In this context, using the ubiquitous CMV-CreER(T2) transgenic mice, we have tested and validated two procedures to achieve recombination just before and just after birth. The efficiency of recombination was evaluated in the brain, which is known to be more problematic to target. For the late gestation treatment with tamoxifen, different protocols of complementary administration of progesterone and estrogen were tested. However, delayed delivery and/or mortality of pups due to difficult delivery were always observed. To circumvent this problem, pups were collected from tamoxifen-treated pregnant dams by caesarian section at E18.5 and given to foster mothers. For postnatal treatment, different dosages of tamoxifen were administered by intragastric injection to the pups during 3 or 4 days after birth. The efficiency of these treatments was analyzed at P7 using a transgenic reporter line. They were also validated with the Hoxa5 conditional allele. In conclusion, we have developed efficient procedures that allow achieving efficient recombination of floxed alleles at perinatal stages. These protocols will allow investigating the late/adult functions of many developmental genes, whose characterization has been so far restricted to embryonic development.


Assuntos
Proteínas de Homeodomínio/genética , Integrases/metabolismo , Fosfoproteínas/genética , Receptores de Estrogênio/genética , Recombinação Genética , Tamoxifeno/farmacologia , Animais , Animais Recém-Nascidos , Antagonistas de Estrogênios/farmacologia , Feminino , Integrases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Assistência Perinatal , Gravidez , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...