Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bone ; 41(5): 820-32, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17765026

RESUMO

Tartrate-resistant acid phosphatase (TRAP) is an enzyme highly expressed in osteoclasts and thought to participate in osteoclast-mediated bone turnover. Cathepsin K (Ctsk) is the major collagenolytic cysteine proteinase expressed in osteoclasts and has recently been shown to be able to proteolytically process and activate TRAP in vitro. In this study, 4-week-old Ctsk(-/-) mice were analysed for TRAP expression at the mRNA, protein and enzyme activity levels to delineate a role of cathepsin K in TRAP processing in osteoclasts in vivo. The absence of cathepsin K in osteoclasts was associated with increased expression of TRAP mRNA, monomeric TRAP protein and total TRAP activity. Proteolytic processing of TRAP was not abolished but prematurely arrested at an intermediate stage without changing enzyme activity, a finding confirmed with RANKL-differentiated osteoclast-like cell line RAW264.7 treated with the cysteine proteinase inhibitor E-64. Thus, the increase in total TRAP activity was mainly due to increased cellular content of monomeric TRAP. The increase in monomeric TRAP expression was more pronounced in osteoclasts of the distal compared to the proximal part of the metaphyseal trabecular bone, suggesting a site-dependent role for cathepsin K in TRAP processing. Moreover, intracellular localization of monomeric TRAP was altered in distal metaphyseal osteoclasts from Ctsk(-/-) mice. Additionally, TRAP was secreted into the ruffled border as the processed form in osteoclasts of Ctsk(-/-) mice, unlike in osteoclasts from wild-type mice which secreted TRAP to the resorption lacuna as the monomeric form. The results demonstrate that cathepsin K is not only involved in proteolytic processing but also affects the intracellular trafficking of TRAP, particularly in osteoclasts of the distal metaphysis. However, contribution by other yet unidentified protease(s) to TRAP processing must also be invoked since proteolytic cleavage of TRAP is not abolished in Ctsk(-/-) mice. Importantly, this study highlights functional differences between bone-resorbing clasts within the trabecular metaphyseal bone, suggesting potentially important differences in the regulation of differentiation and activation depending on the precise anatomical localization of the clast population.


Assuntos
Fosfatase Ácida/metabolismo , Catepsinas/metabolismo , Isoenzimas/metabolismo , Osteoclastos/enzimologia , Fosfatase Ácida/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Catepsina K , Cromatografia Líquida , Primers do DNA , Hidrólise , Isoenzimas/química , Camundongos , Dados de Sequência Molecular , Osteoclastos/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fosfatase Ácida Resistente a Tartarato
2.
J Biol Chem ; 280(31): 28370-81, 2005 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-15929988

RESUMO

Tartrate-resistant acid phosphatase (TRAP) is a metallophosphoesterase participating in osteoclast-mediated bone turnover. Activation of TRAP is associated with the redox state of the di-iron metal center as well as with limited proteolytic cleavage in an exposed loop domain. The cysteine proteinases cathepsin B, L, K, and S as well as the matrix metalloproteinase-2, -9, -13, and -14 are expressed by osteoclasts and/or other bone cells and have been implicated in the turnover of bone and cartilage. To identify proteases that could act as activators of TRAP in bone, we report here that cathepsins K and L, in contrast to the matrix metalloproteinases, efficiently cleaved and activated recombinant TRAP in vitro. Activation of TRAP by cathepsin K/L was because of increases in catalytic activity, substrate affinity, and sensitivity to reductants. Processing by cathepsin K occurred sequentially by an initial excision of the loop peptide Gly(143)-Gly(160) followed by the removal of a Val(161)-Ala(162) dipeptide at the N terminus of the C-terminal 16-kDa TRAP subunit. Cathepsin L initially released a shorter Gln(151)-Gly(160) peptide and completed processing at Ser(145) or Gly(143) at the C terminus of the N-terminal 23-kDa TRAP subunit and at Arg(163) at the N terminus of the C-terminal 16-kDa TRAP subunit. Mutation of Ser(145) to Ala partly mimicked the effect of proteolysis on catalytic activity, identifying Ser(145) as well as Asp(146) (Funhoff, E. G., Ljusberg, J., Wang, Y., Andersson, G., and Averill, B. A. (2001) Biochemistry 40, 11614-11622) as repressive amino acids of the loop region to maintain the TRAP enzyme in a catalytically latent state. The C-terminal sequence of TRAP isolated from rat bone was consistent with cathepsin K-mediated processing in vivo. Moreover, cathepsin K, but not cathepsin L, co-localized with TRAP in osteoclast-resorptive compartments, supporting a role for cathepsin K in the extracellular processing of monomeric TRAP in the resorption lacuna.


Assuntos
Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Catepsinas/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Osteoclastos/enzimologia , Sequência de Aminoácidos , Animais , Catepsina K , Catepsina L , Clonagem Molecular , Cisteína Endopeptidases/metabolismo , Dipeptídeos/metabolismo , Ativação Enzimática , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ratos , Proteínas Recombinantes , Especificidade por Substrato , Fosfatase Ácida Resistente a Tartarato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...