Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Signal Behav ; 4(10): 980-2, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19826229

RESUMO

Metal ions essential for plant growth, such as Fe, Mn, Ni, Cu or Zn, are taken up by plants from the soil solution through metal transporters at the plasma membrane, mainly of the ZIP and Nramp families. These transport systems, however, can also give entry to other metals (Al, Cd, Hg, Pb). Non-nutritive elements, as well as the essential nutrients at higher than metabolic concentrations, can cause phytotoxicity. We have studied previously the effects of an essential (Ni) and a non essential (Cd) heavy metal on root cell plasma membranes, the first selective barrier encountered when entering the plant, using rice as model plant. Distinctive effects of Cd and Ni on membrane function (i.e., Em and membrane permeability) were observed in the short term. We have now confirmed the pattern of Em changes caused by Cd and Ni using barley roots and have also followed the effects of both metals in longer term in rice. Our data indicate that the distinct effects caused by Cd and Ni are due to differences in cellular responses, triggered when entering the cytoplasm (i.e., an efficient detoxifying mechanism for Cd), more than to different direct effects on membranes.

2.
Plant Physiol Biochem ; 46(10): 905-10, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18586508

RESUMO

The heavy metal nickel is an essential mineral trace nutrient found at low concentrations in most natural soils. However, it may reach toxic levels in certain areas and affect a number of biochemical and physiological processes in plants. Wilting and leaf necrosis have been described as typical visible symptoms of Ni(2+) toxicity. The plasma membrane (PM) of root cells constitutes the first barrier for the entry of heavy metals but also a target of their toxic action. This work studies the relationship between disturbances of membrane functionality and the development of the typical symptoms of Ni(2+) toxicity. Rice plants (Oryza sativa L. cv. Bahia) grown in nutrient medium containing 0.5mM Ni(2+) showed a significant decrease in water content as a consequence of the stress. Addition of Ni(2+) to the solution bathing the roots induced a concentration-dependent PM depolarization but the activity of the PM-H(+)-ATPase was not inhibited by the presence of Ni(2+) and the initial resting potential recovered in less than 1h. In the short term (hours), membrane permeability of root cells was not significantly affected by Ni(2+) treatments. However, in the long term (days) a drastic loss of K(+) was measured in roots and shoots, which should be responsible for the changes in the water content measured, since stomatal conductance and the transpiration rate remained unaffected by Ni(2+) treatment. The effects induced by Ni(2+) were not permanent and could be reverted, at least in part, by transferring the plants to a medium without Ni(2+).


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Níquel/toxicidade , Oryza/efeitos dos fármacos , Água/análise , Potenciais da Membrana , Oryza/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...