Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 35(11): 109247, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34133919

RESUMO

The outer membrane protects Gram-negative bacteria from the host environment. Lipopolysaccharide (LPS), a major outer membrane constituent, has distinct components (lipid A, core, O-antigen) generated by specialized pathways. In this study, we describe the surprising convergence of these pathways through FlmX, an uncharacterized protein in the intracellular pathogen Francisella. FlmX is in the flippase family, which includes proteins that traffic lipid-linked envelope components across membranes. flmX deficiency causes defects in lipid A modification, core remodeling, and O-antigen addition. We find that an F. tularensis mutant lacking flmX is >1,000,000-fold attenuated. Furthermore, FlmX is required to resist the innate antimicrobial LL-37 and the antibiotic polymyxin. Given FlmX's central role in LPS modification and its conservation in intracellular pathogens Brucella, Coxiella, and Legionella, FlmX may represent a novel drug target whose inhibition could cripple bacterial virulence and sensitize bacteria to innate antimicrobials and antibiotics.


Assuntos
Proteínas de Bactérias/metabolismo , Francisella/metabolismo , Francisella/patogenicidade , Lipopolissacarídeos/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Elementos de DNA Transponíveis/genética , Escherichia coli/metabolismo , Feminino , Francisella/genética , Galactosamina/metabolismo , Regulação Bacteriana da Expressão Gênica , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Modelos Biológicos , Antígenos O/metabolismo , Polimixina B/farmacologia , Virulência/genética
2.
Nat Commun ; 10(1): 2720, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31221973

RESUMO

Public Health Laboratories (PHLs) in Puerto Rico did not escape the devastation caused by Hurricane Maria. We implemented a quality management system (QMS) approach to systematically reestablish laboratory testing, after evaluating structural and functional damage. PHLs were inoperable immediately after the storm. Our QMS-based approach began in October 2017, ended in May 2018, and resulted in the reestablishment of 92% of baseline laboratory testing capacity. Here, we share lessons learned from the historic recovery of the largest United States' jurisdiction to lose its PHL capacity, and provide broadly applicable tools for other jurisdictions to enhance preparedness for public health emergencies.

3.
Nature ; 570(7760): E30-E31, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31127194

RESUMO

Change history: We could not replicate the results in Fig. 2a and g of this Letter, and new information has revealed a flaw in the interpretation of Fig. 2h. As a result, we do not have evidence to support RNA degradation as the mechanism that underlies Cas9-mediated regulation of FTN_1103 mRNA expression; see accompanying Amendment. This has not been corrected online.

4.
PLoS One ; 12(12): e0189937, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29261791

RESUMO

Cooling towers (CTs) are a leading source of outbreaks of Legionnaires' disease (LD), a severe form of pneumonia caused by inhalation of aerosols containing Legionella bacteria. Accordingly, proper maintenance of CTs is vital for the prevention of LD. The aim of this study was to determine the distribution of Legionella in a subset of regionally diverse US CTs and characterize the associated microbial communities. Between July and September of 2016, we obtained aliquots from water samples collected for routine Legionella testing from 196 CTs located in eight of the nine continental US climate regions. After screening for Legionella by PCR, positive samples were cultured and the resulting Legionella isolates were further characterized. Overall, 84% (164) were PCR-positive, including samples from every region studied. Of the PCR-positive samples, Legionella spp were isolated from 47% (78), L. pneumophila was isolated from 32% (53), and L. pneumophila serogroup 1 (Lp1) was isolated from 24% (40). Overall, 144 unique Legionella isolates were identified; 53% (76) of these were Legionella pneumophila. Of the 76 L. pneumophila isolates, 51% (39) were Lp1. Legionella were isolated from CTs in seven of the eight US regions examined. 16S rRNA amplicon sequencing was used to compare the bacterial communities of CT waters with and without detectable Legionella as well as the microbiomes of waters from different climate regions. Interestingly, the microbial communities were homogenous across climate regions. When a subset of seven CTs sampled in April and July were compared, there was no association with changes in corresponding CT microbiomes over time in the samples that became culture-positive for Legionella. Legionella species and Lp1 were detected frequently among the samples examined in this first large-scale study of Legionella in US CTs. Our findings highlight that, under the right conditions, there is the potential for CT-related LD outbreaks to occur throughout the US.


Assuntos
Legionella/fisiologia , Microbiologia da Água , Biodiversidade , Clima , DNA Bacteriano/isolamento & purificação , Geografia , Microbiota , Filogenia , Reação em Cadeia da Polimerase , Estações do Ano , Estados Unidos/epidemiologia
5.
Proc Natl Acad Sci U S A ; 111(30): 11163-8, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25024199

RESUMO

Clustered, regularly interspaced, short palindromic repeats-CRISPR associated (CRISPR-Cas) systems defend bacteria against foreign nucleic acids, such as during bacteriophage infection and transformation, processes which cause envelope stress. It is unclear if these machineries enhance membrane integrity to combat this stress. Here, we show that the Cas9-dependent CRISPR-Cas system of the intracellular bacterial pathogen Francisella novicida is involved in enhancing envelope integrity through the regulation of a bacterial lipoprotein. This action ultimately provides increased resistance to numerous membrane stressors, including antibiotics. We further find that this previously unappreciated function of Cas9 is critical during infection, as it promotes evasion of the host innate immune absent in melanoma 2/apoptosis associated speck-like protein containing a CARD (AIM2/ASC) inflammasome. Interestingly, the attenuation of the cas9 mutant is complemented only in mice lacking both the AIM2/ASC inflammasome and the bacterial lipoprotein sensor Toll-like receptor 2, but not in single knockout mice, demonstrating that Cas9 is essential for evasion of both pathways. These data represent a paradigm shift in our understanding of the function of CRISPR-Cas systems as regulators of bacterial physiology and provide a framework with which to investigate the roles of these systems in myriad bacteria, including pathogens and commensals.


Assuntos
Proteínas de Bactérias/imunologia , Farmacorresistência Bacteriana/imunologia , Francisella/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Evasão da Resposta Imune/imunologia , Inflamassomos/imunologia , Lipoproteínas/imunologia , Animais , Membrana Celular/genética , Membrana Celular/imunologia , Farmacorresistência Bacteriana/genética , Francisella/genética , Infecções por Bactérias Gram-Negativas/genética , Evasão da Resposta Imune/genética , Inflamassomos/genética , Sequências Repetidas Invertidas/imunologia , Lipoproteínas/genética , Camundongos , Camundongos Knockout
6.
Nature ; 497(7448): 254-7, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23584588

RESUMO

CRISPR/Cas (clustered regularly interspaced palindromic repeats/CRISPR-associated) systems are a bacterial defence against invading foreign nucleic acids derived from bacteriophages or exogenous plasmids. These systems use an array of small CRISPR RNAs (crRNAs) consisting of repetitive sequences flanking unique spacers to recognize their targets, and conserved Cas proteins to mediate target degradation. Recent studies have suggested that these systems may have broader functions in bacterial physiology, and it is unknown if they regulate expression of endogenous genes. Here we demonstrate that the Cas protein Cas9 of Francisella novicida uses a unique, small, CRISPR/Cas-associated RNA (scaRNA) to repress an endogenous transcript encoding a bacterial lipoprotein. As bacterial lipoproteins trigger a proinflammatory innate immune response aimed at combating pathogens, CRISPR/Cas-mediated repression of bacterial lipoprotein expression is critical for F. novicida to dampen this host response and promote virulence. Because Cas9 proteins are highly enriched in pathogenic and commensal bacteria, our work indicates that CRISPR/Cas-mediated gene regulation may broadly contribute to the regulation of endogenous bacterial genes, particularly during the interaction of such bacteria with eukaryotic hosts.


Assuntos
Gammaproteobacteria/imunologia , Gammaproteobacteria/patogenicidade , Evasão da Resposta Imune , Imunidade Inata/imunologia , Animais , Feminino , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Genes Bacterianos/genética , Interações Hospedeiro-Patógeno/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Fatores de Tempo , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/metabolismo , Virulência/genética
7.
Mol Microbiol ; 86(3): 611-27, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22966934

RESUMO

Modification of specific Gram-negative bacterial cell envelope components, such as capsule, O-antigen and lipid A, are often essential for the successful establishment of infection. Francisella species express lipid A molecules with unique characteristics involved in circumventing host defences, which significantly contribute to their virulence. In this study, we show that NaxD, a member of the highly conserved YdjC superfamily, is a deacetylase required for an important modification of the outer membrane component lipid A in Francisella. Mass spectrometry analysis revealed that NaxD is essential for the modification of a lipid A phosphate with galactosamine in Francisella novicida, a model organism for the study of highly virulent Francisella tularensis. Significantly, enzymatic assays confirmed that this protein is necessary for deacetylation of its substrate. In addition, NaxD was involved in resistance to the antimicrobial peptide polymyxin B and critical for replication in macrophages and in vivo virulence. Importantly, this protein is also required for lipid A modification in F. tularensis as well as Bordetella bronchiseptica. Since NaxD homologues are conserved among many Gram-negative pathogens, this work has broad implications for our understanding of host subversion mechanisms of other virulent bacteria.


Assuntos
Amidoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Francisella/enzimologia , Francisella/patogenicidade , Infecções por Bactérias Gram-Negativas/microbiologia , Lipídeo A/metabolismo , Amidoidrolases/química , Amidoidrolases/genética , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Linhagem Celular , Feminino , Francisella/genética , Francisella/metabolismo , Francisella tularensis/enzimologia , Francisella tularensis/genética , Humanos , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Alinhamento de Sequência , Virulência
8.
Microbiol Mol Biol Rev ; 76(2): 383-404, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22688817

RESUMO

Francisella tularensis is a gram-negative intracellular pathogen and the causative agent of the disease tularemia. Inhalation of as few as 10 bacteria is sufficient to cause severe disease, making F. tularensis one of the most highly virulent bacterial pathogens. The initial stage of infection is characterized by the "silent" replication of bacteria in the absence of a significant inflammatory response. Francisella achieves this difficult task using several strategies: (i) strong integrity of the bacterial surface to resist host killing mechanisms and the release of inflammatory bacterial components (pathogen-associated molecular patterns [PAMPs]), (ii) modification of PAMPs to prevent activation of inflammatory pathways, and (iii) active modulation of the host response by escaping the phagosome and directly suppressing inflammatory pathways. We review the specific mechanisms by which Francisella achieves these goals to subvert host defenses and promote pathogenesis, highlighting as-yet-unanswered questions and important areas for future study.


Assuntos
Francisella tularensis/patogenicidade , Tularemia/microbiologia , Animais , Francisella tularensis/crescimento & desenvolvimento , Genoma Bacteriano , Interações Hospedeiro-Patógeno , Humanos , Mediadores da Inflamação/metabolismo , Viabilidade Microbiana , Fagossomos/microbiologia
9.
PLoS One ; 6(9): e24201, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21915295

RESUMO

Francisella tularensis is a gram-negative facultative intracellular pathogen and the causative agent of tularemia. Recently, genome-wide screens have identified Francisella genes required for virulence in mice. However, the mechanisms by which most of the corresponding proteins contribute to pathogenesis are still largely unknown. To further elucidate the roles of these virulence determinants in Francisella pathogenesis, we tested whether each gene was required for replication of the model pathogen F. novicida within macrophages, an important virulence trait. Fifty-three of the 224 genes tested were involved in intracellular replication, including many of those within the Francisella pathogenicity island (FPI), validating our results. Interestingly, over one third of the genes identified are annotated as hypothetical, indicating that F. novicida likely utilizes novel virulence factors for intracellular replication. To further characterize these virulence determinants, we selected two hypothetical genes to study in more detail. As predicted by our screen, deletion mutants of FTN_0096 and FTN_1133 were attenuated for replication in macrophages. The mutants displayed differing levels of attenuation in vivo, with the FTN_1133 mutant being the most attenuated. FTN_1133 has sequence similarity to the organic hydroperoxide resistance protein Ohr, an enzyme involved in the bacterial response to oxidative stress. We show that FTN_1133 is required for F. novicida resistance to, and degradation of, organic hydroperoxides as well as resistance to the action of the NADPH oxidase both in macrophages and mice. Furthermore, we demonstrate that F. holarctica LVS, a strain derived from a highly virulent human pathogenic species of Francisella, also requires this protein for organic hydroperoxide resistance as well as replication in macrophages and mice. This study expands our knowledge of Francisella's largely uncharacterized intracellular lifecycle and demonstrates that FTN_1133 is an important novel mediator of oxidative stress resistance.


Assuntos
Proteínas de Bactérias/metabolismo , Francisella/metabolismo , Francisella/patogenicidade , Peróxido de Hidrogênio/farmacologia , Macrófagos/microbiologia , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Feminino , Francisella/genética , Ilhas Genômicas/genética , Ilhas Genômicas/fisiologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Virulência/genética , Virulência/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...