Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 16(1)2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38251268

RESUMO

Penicillium expansum is one the major postharvest pathogens of pome fruit during postharvest handling and storage. This fungus also produces patulin, which is a highly toxic mycotoxin that can contaminate infected fruits and their derived products and whose levels are regulated in many countries. In this study, we investigated the biocontrol potential of non-mycotoxigenic strains of Penicillium expansum against a mycotoxigenic strain. We analyzed the competitive behavior of two knockout mutants that were unable to produce patulin. The first mutant (∆patK) involved the deletion of the patK gene, which is the initial gene in patulin biosynthesis. The second mutant (∆veA) involved the deletion of veA, which is a global regulator of primary and secondary metabolism. At the phenotypic level, the ∆patK mutant exhibited similar phenotypic characteristics to the wild-type strain. In contrast, the ∆veA mutant displayed altered growth characteristics compared with the wild type, including reduced conidiation and abnormal conidiophores. Neither mutant produced patulin under the tested conditions. Under various stress conditions, the ∆veA mutants exhibited reduced growth and conidiation when exposed to stressors, including cell membrane stress, oxidative stress, osmotic stress, and different pH values. However, no significant changes were observed in the ∆patK mutant. In competitive growth experiments, the presence of non-mycotoxigenic strains reduced the population of the wild-type strain during in vitro growth. Furthermore, the addition of either of the non-mycotoxigenic strains resulted in a significant decrease in patulin levels. Overall, our results suggest the potential use of non-mycotoxigenic mutants, particularly ∆patK mutants, as biocontrol agents to reduce patulin contamination in food and feed.


Assuntos
Patulina , Penicillium , Patulina/toxicidade , Penicillium/genética , Membrana Celular , Frutas
2.
Toxins (Basel) ; 14(11)2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36355995

RESUMO

Aspergillus carbonarius is one of the main species responsible for wine, coffee and cocoa toxin contamination. The main mycotoxin produced by this fungus, ochratoxin A (OTA), is a secondary metabolite categorized as a possible carcinogen because of its significant nephrotoxicity and immunosuppressive effects. A polyketide synthase gene (otaA) encodes the first enzyme in the OTA biosynthetic pathway. It is known that the filamentous fungi, growth, development and production of secondary metabolites are interconnected processes governed by global regulatory factors whose encoding genes are generally located outside the gene clusters involved in the biosynthesis of each secondary metabolite, such as the veA gene, which forms part of the VELVET complex. Different fungal strains compete for nutrients and space when they infect their hosts, and safer non-mycotoxigenic strains may be able to outcompete mycotoxigenic strains during colonization. To determine the possible utility of biopesticides based on the competitive exclusion of mycotoxigenic strains by non-toxigenic ones, we used A. carbonarius ΔotaA and ΔveA knockout mutants. Our results showed that during both in vitro growth and infection of grapes, non-mycotoxigenic strains could outcompete the wild-type strain. Additionally, the introduction of the non-mycotoxigenic strain led to a drastic decrease in OTA during both in vitro growth and infection of grapes.


Assuntos
Ocratoxinas , Vitis , Ocratoxinas/metabolismo , Aspergillus/genética , Aspergillus/metabolismo , Vitis/microbiologia , Fungos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...