Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Mol Neurobiol ; 59(9): 1-9, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35716271

RESUMO

Biomarkers are becoming increasingly important for the differential diagnosis of neurodegenerative diseases. Previous observations indicated neurofilament light chain (NfL) as a potential blood-based biomarker for sporadic Creutzfeldt-Jakob disease (sCJD). Here, we investigated the stability, inter-assay/intra-assay variation and the regulation of NfL levels in CSF and plasma in a large cohort of sCJD patients by using a single-molecule array (SIMOA). We defined cutoffs for an accurate diagnosis and measured plasma NfL level in prion-infected mice models at different time points to identify the potential dynamics throughout the disease. Our analyses confirmed CSF and plasma NfL as stable and consistent marker for sCJD. Receiver operating characteristic (ROC) curve analysis showed an AUC of 0.92-0.93 to distinguish sCJD from control groups. Newly defined cutoffs revealed good diagnostic accuracies of CSF and plasma NfL, indicated by a sensitivity of 80-83.5% and a specificity of 87.4-91%. Studies on two humanized prion-infected mice lines (Tg340-PRNP 129MM and Tg361-PRNP 129VV) revealed increased plasma NfL levels in a late pre-clinical or very early clinical stage between 120-150 days post-inoculation. In conclusion, our work supports the potential use of CSF and plasma NfL as a very early biomarker in sCJD diagnostic with good diagnostic accuracies.


Assuntos
Síndrome de Creutzfeldt-Jakob , Príons , Animais , Biomarcadores , Síndrome de Creutzfeldt-Jakob/diagnóstico , Humanos , Filamentos Intermediários , Camundongos , Proteínas de Neurofilamentos , Proteínas tau
2.
Diagnostics (Basel) ; 12(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35626415

RESUMO

Biomarkers are increasingly recognized as tools in the diagnosis and prognosis of neurodegenerative diseases. No fluid biomarker for Parkinson's disease (PD) has been established to date, but α-synuclein, a major component of Lewy bodies in PD and dementia with Lewy bodies (DLB), has become a promising candidate. Here, we investigated CSF α-synuclein in patients with PD (n = 28), PDD (n = 8), and DLB (n = 5), applying an electrochemiluminescence immunoassay. Median values were non-significantly (p = 0.430) higher in patients with PDD and DLB (287 pg/mL) than in PD (236 pg/mL). A group of n = 36 primarily non-demented patients with PD and PDD was clinically followed for up to two years. A higher baseline α-synuclein was associated with increases in Hoehn and Yahr classifications (p = 0.019) and Beck Depression Inventory scores (p < 0.001) as well as worse performance in Trail Making Test A (p = 0.017), Trail Making Test B (p = 0.043), and the Boston Naming Test (p = 0.002) at follow-up. Surprisingly, higher levels were associated with a better performance in semantic verbal fluency tests (p = 0.046). In summary, CSF α-synuclein may be a potential prognostic marker for disease progression, affective symptoms, and executive cognitive function in PD. Larger-scaled studies have to validate these findings and the discordant results for single cognitive tests in this exploratory investigation.

3.
Brain ; 145(2): 700-712, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35288744

RESUMO

Genetic prion diseases are a rare and diverse group of fatal neurodegenerative disorders caused by pathogenic sequence variations in the prion protein gene, PRNP. Data on CSF biomarkers in patients with genetic prion diseases are limited and conflicting results have been reported for unclear reasons. Here, we aimed to analyse the diagnostic accuracy of CSF biomarkers currently used in prion clinical diagnosis in 302 symptomatic genetic prion disease cases from 11 prion diagnostic centres, encompassing a total of 36 different pathogenic sequence variations within the open reading frame of PRNP. CSF samples were assessed for the surrogate markers of neurodegeneration, 14-3-3 protein (14-3-3), total-tau protein (t-tau) and α-synuclein and for prion seeding activity through the real-time quaking-induced conversion assay. Biomarker results were compared with those obtained in healthy and neurological controls. For the most prevalent PRNP pathogenic sequence variations, biomarker accuracy and associations between biomarkers, demographic and genetic determinants were assessed. Additionally, the prognostic value of biomarkers for predicting total disease duration from symptom onset to death was investigated. High sensitivity of the four biomarkers was detected for genetic Creutzfeldt-Jakob disease associated with the E200K and V210I mutations, but low sensitivity was observed for mutations associated with Gerstmann-Sträussler-Scheinker syndrome and fatal familial insomnia. All biomarkers showed good to excellent specificity using the standard cut-offs often used for sporadic Creutzfeldt-Jakob disease. In genetic prion diseases related to octapeptide repeat insertions, the biomarker sensitivity correlated with the number of repeats. New genetic prion disease-specific cut-offs for 14-3-3, t-tau and α-synuclein were calculated. Disease duration in genetic Creutzfeldt-Jakob disease-E200K, Gerstmann-Sträussler-Scheinker-P102L and fatal familial insomnia was highly dependent on PRNP codon 129 MV polymorphism and was significantly associated with biomarker levels. In a large cohort of genetic prion diseases, the simultaneous analysis of CSF prion disease biomarkers allowed the determination of new mutation-specific cut-offs improving the discrimination of genetic prion disease cases and unveiled genetic prion disease-specific associations with disease duration.


Assuntos
Síndrome de Creutzfeldt-Jakob , Insônia Familiar Fatal , Doenças Priônicas , Príons , Biomarcadores/líquido cefalorraquidiano , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/genética , Humanos , Insônia Familiar Fatal/genética , Doenças Priônicas/diagnóstico , Doenças Priônicas/genética , Proteínas Priônicas/genética , Príons/genética , alfa-Sinucleína
4.
Eur J Neurol ; 29(6): 1841-1846, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35212083

RESUMO

BACKGROUND AND PURPOSE: Fatal familial insomnia is a rare hereditary prion disease associated with the D178N-129M PRNP mutation. Early diagnosis is difficult, because the clinical syndrome may overlap with affective disorders. In addition, most known cerebrospinal fluid biomarkers for prion diseases and magnetic resonance imaging do not show a good diagnostic accuracy for fatal familial insomnia. In this context, data on plasma biomarkers are scarce. METHODS: We analyzed levels of neurofilament light chain, glial fibrillary acidic protein, chitinase-3-like protein 1, calcium-binding protein B, and total tau protein in six serial plasma samples from a patient with fatal familial insomnia. Subsequently, plasma neurofilament light chain was analyzed in n = 25 patients and n = 19 controls. The diagnostic accuracy and associations with disease stage and duration were explored. RESULTS: Among all biomarker candidates in the case study, only neurofilament light chain levels showed a constant evolution and increased over time. They discriminated fatal familial insomnia from controls with an area under the curve of 0.992 (95% confidence interval [CI] = 0.974-1) in the case-control study. Higher concentrations were associated with methionine homozygosity at codon 129 PRNP (p = 0.006), shorter total disease duration (rho = -0.467, p = 0.019, 95% CI = -0.790 to -0.015), and shorter time from sampling to death (rho = -0.467, p = 0.019, 95% CI = -0.773 to -0.019). CONCLUSIONS: Plasma neurofilament light chain may be a valuable minimally invasive diagnostic biomarker for fatal familial insomnia after clinical onset. Most important, stage-related increase and association with disease duration indicate potential as a prognostic marker and as a surrogate marker in clinical trials.


Assuntos
Insônia Familiar Fatal , Doenças Priônicas , Biomarcadores , Estudos de Casos e Controles , Humanos , Insônia Familiar Fatal/diagnóstico , Insônia Familiar Fatal/genética , Filamentos Intermediários , Doenças Priônicas/genética
5.
Alzheimers Res Ther ; 14(1): 9, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027079

RESUMO

BACKGROUND: Lipocalin-2 is a glycoprotein that is involved in various physiological and pathophysiological processes. In the brain, it is expressed in response to vascular and other brain injury, as well as in Alzheimer's disease in reactive microglia and astrocytes. Plasma Lipocalin-2 has been proposed as a biomarker for Alzheimer's disease but available data is scarce and inconsistent. Thus, we evaluated plasma Lipocalin-2 in the context of Alzheimer's disease, differential diagnoses, other biomarkers, and clinical data. METHODS: For this two-center case-control study, we analyzed Lipocalin-2 concentrations in plasma samples from a cohort of n = 407 individuals. The diagnostic groups comprised Alzheimer's disease (n = 74), vascular dementia (n = 28), other important differential diagnoses (n = 221), and healthy controls (n = 84). Main results were validated in an independent cohort with patients with Alzheimer's disease (n = 19), mild cognitive impairment (n = 27), and healthy individuals (n = 28). RESULTS: Plasma Lipocalin-2 was significantly lower in Alzheimer's disease compared to healthy controls (p < 0.001) and all other groups (p < 0.01) except for mixed dementia (vascular and Alzheimer's pathologic changes). Areas under the curve from receiver operation characteristics for the discrimination of Alzheimer's disease and healthy controls were 0.783 (95%CI: 0.712-0.855) in the study cohort and 0.766 (95%CI: 0.627-0.905) in the validation cohort. The area under the curve for Alzheimer's disease versus vascular dementia was 0.778 (95%CI: 0.667-0.890) in the study cohort. In Alzheimer's disease patients, plasma Lipocalin2 did not show significant correlation with cerebrospinal fluid biomarkers of neurodegeneration and AD-related pathology (total-tau, phosphorylated tau protein, and beta-amyloid 1-42), cognitive status (Mini Mental Status Examination scores), APOE genotype, or presence of white matter hyperintensities. Interestingly, Lipocalin 2 was lower in patients with rapid disease course compared to patients with non-rapidly progressive Alzheimer's disease (p = 0.013). CONCLUSIONS: Plasma Lipocalin-2 has potential as a diagnostic biomarker for Alzheimer's disease and seems to be independent from currently employed biomarkers.


Assuntos
Doença de Alzheimer , Biomarcadores , Doença de Alzheimer/sangue , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/sangue , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Estudos de Casos e Controles , Disfunção Cognitiva/diagnóstico , Diagnóstico Diferencial , Humanos , Lipocalina-2/sangue , Proteínas tau
6.
Mov Disord ; 37(1): 39-51, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34448510

RESUMO

BACKGROUND: The cellular prion protein (PrPC ) is a membrane-bound, multifunctional protein mainly expressed in neuronal tissues. Recent studies indicate that the native trafficking of PrPC can be misused to internalize misfolded amyloid beta and α-synuclein (aSyn) oligomers. OBJECTIVES: We define PrPC 's role in internalizing misfolded aSyn in α-synucleinopathies and identify further involved proteins. METHODS: We performed comprehensive behavioral studies on four transgenic mouse models (ThySyn and ThySynPrP00, TgM83 and TgMPrP00) at different ages. We developed PrPC -(over)-expressing cell models (cell line and primary cortical neurons), used confocal laser microscopy to perform colocalization studies, applied mass spectrometry to identify interactomes, and determined disassociation constants using surface plasmon resonance (SPR) spectroscopy. RESULTS: Behavioral deficits (memory, anxiety, locomotion, etc.), reduced lifespans, and higher oligomeric aSyn levels were observed in PrPC -expressing mice (ThySyn and TgM83), but not in homologous Prnp ablated mice (ThySynPrP00 and TgMPrP00). PrPC colocalized with and facilitated aSyn (oligomeric and monomeric) internalization in our cell-based models. Glimepiride treatment of PrPC -overexpressing cells reduced aSyn internalization in a dose-dependent manner. SPR analysis showed that the binding affinity of PrPC to monomeric aSyn was lower than to oligomeric aSyn. Mass spectrometry-based proteomic studies identified clathrin in the immunoprecipitates of PrPC and aSyn. SPR was used to show that clathrin binds to recombinant PrP, but not aSyn. Experimental disruption of clathrin-coated vesicles significantly decreased aSyn internalization. CONCLUSION: PrPC 's native trafficking can be misused to internalize misfolded aSyn through a clathrin-based mechanism, which may facilitate the spreading of pathological aSyn. Disruption of aSyn-PrPC binding is, therefore, an appealing therapeutic target in α-synucleinopathies. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Sinucleinopatias , alfa-Sinucleína , Peptídeos beta-Amiloides , Animais , Camundongos , Proteínas Priônicas , Proteômica , alfa-Sinucleína/metabolismo
8.
Front Aging Neurosci ; 13: 717930, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630068

RESUMO

Alpha-synucleinopathies, such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), are a class of neurodegenerative diseases. A diagnosis may be challenging because clinical symptoms partially overlap, and there is currently no reliable diagnostic test available. Therefore, we aimed to identify a suitable marker protein in cerebrospinal fluid (CSF) to distinguish either between different types of alpha-synucleinopathies or between alpha-synucleinopathies and controls. In this study, the regulation of different marker protein candidates, such as alpha-synuclein (a-Syn), neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), and total tau (tau) in different types of alpha-synucleinopathies, had been analyzed by using an ultrasensitive test system called single-molecule array (SIMOA). Interestingly, we observed that CSF-NfL was significantly elevated in patients with DLB and MSA compared to patients with PD or control donors. To differentiate between groups, receiver operating characteristic (ROC) curve analysis resulted in a very good diagnostic accuracy as indicated by the area under the curve (AUC) values of 0.87-0.92 for CSF-NfL. Furthermore, we observed that GFAP and tau were slightly increased either in DLB or MSA, while a-Syn levels remained unregulated. Our study suggests NfL as a promising marker to discriminate between different types of alpha-synucleinopathies or between DLB/MSA and controls.

10.
Mol Cancer Res ; 19(11): 1840-1853, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34312290

RESUMO

Lymphangioleiomyomatosis (LAM) is a rare, low-grade metastasizing disease characterized by cystic lung destruction. LAM can exhibit extensive heterogeneity at the molecular, cellular, and tissue levels. However, the molecular similarities and differences among LAM cells and tissue, and their connection to cancer features are not fully understood. By integrating complementary gene and protein LAM signatures, and single-cell and bulk tissue transcriptome profiles, we show sources of disease heterogeneity, and how they correspond to cancer molecular portraits. Subsets of LAM diseased cells differ with respect to gene expression profiles related to hormones, metabolism, proliferation, and stemness. Phenotypic diseased cell differences are identified by evaluating lumican (LUM) proteoglycan and YB1 transcription factor expression in LAM lung lesions. The RUNX1 and IRF1 transcription factors are predicted to regulate LAM cell signatures, and both regulators are expressed in LAM lung lesions, with differences between spindle-like and epithelioid LAM cells. The cancer single-cell transcriptome profiles most similar to those of LAM cells include a breast cancer mesenchymal cell model and lines derived from pleural mesotheliomas. Heterogeneity is also found in LAM lung tissue, where it is mainly determined by immune system factors. Variable expression of the multifunctional innate immunity protein LCN2 is linked to disease heterogeneity. This protein is found to be more abundant in blood plasma from LAM patients than from healthy women. IMPLICATIONS: This study identifies LAM molecular and cellular features, master regulators, cancer similarities, and potential causes of disease heterogeneity.


Assuntos
Biomarcadores Tumorais/metabolismo , Linfangioleiomiomatose/genética , Transcriptoma/genética , Feminino , Humanos
11.
Acta Neuropathol ; 141(6): 841-859, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33881612

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) is an innate immune cell surface receptor that regulates microglial function and is involved in the pathophysiology of several neurodegenerative diseases. Its soluble form (sTREM2) results from shedding of the TREM2 ectodomain. The role of TREM2 in prion diseases, a group of rapidly progressive dementias remains to be elucidated. In the present study, we analysed the expression of TREM2 and its main sheddase ADAM10 in the brain of sporadic Creutzfeldt-Jakob disease (sCJD) patients and evaluated the role of CSF and plasma sTREM2 as a potential diagnostic marker of prion disease. Our data indicate that, compared to controls, TREM2 is increased in sCJD patient brains at the mRNA and protein levels in a regional and subtype dependent fashion, and expressed in a subpopulation of microglia. In contrast, ADAM10 is increased at the protein, but not the mRNA level, with a restricted neuronal expression. Elevated CSF sTREM2 is found in sCJD, genetic CJD with mutations E200K and V210I in the prion protein gene (PRNP), and iatrogenic CJD, as compared to healthy controls (HC) (AUC = 0.78-0.90) and neurological controls (AUC = 0.73-0.85), while CSF sTREM2 is unchanged in fatal familial insomnia. sTREM2 in the CSF of cases with Alzheimer's disease, and multiple sclerosis was not significantly altered in our series. CSF sTREM2 concentrations in sCJD are PRNP codon 129 and subtype-related, correlate with CSF 14-3-3 positivity, total-tau and YKL-40, and increase with disease progression. In plasma, sTREM2 is increased in sCJD compared with HC (AUC = 0.80), displaying positive correlations with plasma total-tau, neurofilament light, and YKL-40. We conclude that comparative study of TREM2 in brain and biological fluids of prion diseases reveals TREM2 to be altered in human prion diseases with a potential value in target engagement, patient stratification, and disease monitoring.


Assuntos
Proteína ADAM10 , Encéfalo , Glicoproteínas de Membrana , Doenças Priônicas , Receptores Imunológicos , Proteína ADAM10/sangue , Proteína ADAM10/líquido cefalorraquidiano , Proteína ADAM10/metabolismo , Doença de Alzheimer/metabolismo , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Glicoproteínas de Membrana/sangue , Glicoproteínas de Membrana/líquido cefalorraquidiano , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Microglia/metabolismo , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Proteínas Priônicas/metabolismo , Receptores Imunológicos/sangue , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
12.
Alzheimers Res Ther ; 13(1): 86, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883011

RESUMO

BACKGROUND: Blood neurofilament light (Nfl) and total-tau (t-tau) have been described to be increased in several neurological conditions, including prion diseases and other neurodegenerative dementias. Here, we aim to determine the accuracy of plasma Nfl and t-tau in the differential diagnosis of neurodegenerative dementias and their potential value as prognostic markers of disease severity. METHODS: Plasma Nfl and t-tau were measured in healthy controls (HC, n = 70), non-neurodegenerative neurological disease with (NND-Dem, n = 17) and without dementia syndrome (NND, n = 26), Alzheimer's disease (AD, n = 44), Creutzfeldt-Jakob disease (CJD, n = 83), dementia with Lewy bodies/Parkinson's disease with dementia (DLB/PDD, n = 35), frontotemporal dementia (FTD, n = 12), and vascular dementia (VaD, n = 22). Biomarker diagnostic accuracies and cutoff points for the diagnosis of CJD were calculated, and associations between Nfl and t-tau concentrations with other fluid biomarkers, demographic, genetic, and clinical data in CJD cases were assessed. Additionally, the value of Nfl and t-tau predicting disease survival in CJD was evaluated. RESULTS: Among diagnostic groups, highest plasma Nfl and t-tau concentrations were detected in CJD (fold changes of 38 and 18, respectively, compared to HC). Elevated t-tau was able to differentiate CJD from all other groups, whereas elevated Nfl concentrations were also detected in NND-Dem, AD, DLB/PDD, FTD, and VaD compared to HC. Both biomarkers discriminated CJD from non-CJD dementias with an AUC of 0.93. In CJD, plasma t-tau, but not Nfl, was associated with PRNP codon 129 genotype and CJD subtype. Positive correlations were observed between plasma Nfl and t-tau concentrations, as well as between plasma and CSF concentrations of both biomarkers (p < 0.001). Nfl was increased in rapidly progressive AD (rpAD) compared to slow progressive AD (spAD) and associated to Mini-Mental State Examination results. However, Nfl displayed higher accuracy than t-tau discriminating CJD from rpAD and spAD. Finally, plasma t-tau, but not plasma Nfl, was significantly associated with disease duration, offering a moderate survival prediction capacity. CONCLUSIONS: Plasma Nfl and t-tau are useful complementary biomarkers for the differential diagnosis of CJD. Additionally, plasma t-tau emerges as a potential prognostic marker of disease duration.


Assuntos
Doença de Alzheimer , Síndrome de Creutzfeldt-Jakob , Doenças Priônicas , Biomarcadores , Síndrome de Creutzfeldt-Jakob/diagnóstico , Humanos , Filamentos Intermediários , Prognóstico , Proteínas tau
13.
Transl Neurodegener ; 10(1): 8, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637132

RESUMO

OBJECTIVE: α-Synuclein has been studied as a potential biomarker for Parkinson's disease (PD) with no concluding results. Accordingly, there is an urgent need to find out reliable specific biomarkers for PD. GPR37 is an orphan G protein-coupled receptor that toxically accumulates in autosomal recessive juvenile parkinsonism. Here, we investigated whether GPR37 is upregulated in sporadic PD, and thus a suitable potential biomarker for PD. METHODS: GPR37 protein density and mRNA expression in postmortem substantia nigra (SN) from PD patients were analysed by immunoblot and RT-qPCR, respectively. The presence of peptides from the N-terminus-cleaved domain of GPR37 (i.e. ecto-GPR37) in human cerebrospinal fluid (CSF) was determined by liquid chromatography-mass spectrometric analysis. An engineered in-house nanoluciferase-based immunoassay was used to quantify ecto-GPR37 in CSF samples from neurological control (NC) subjects, PD patients and Alzheimer's disease (AD) patients. RESULTS: GPR37 protein density and mRNA expression were significantly augmented in sporadic PD. Increased amounts of ecto-GPR37 peptides in the CSF samples from PD patients were identified by mass spectrometry and quantified by the in-house ELISA method. However, the CSF total α-synuclein level in PD patients did not differ from that in NC subjects. Similarly, the cortical GPR37 mRNA expression and CSF ecto-GPR37 levels in AD patients were also unaltered. CONCLUSION: GPR37 expression is increased in SN of sporadic PD patients. The ecto-GPR37 peptides are significantly increased in the CSF of PD patients, but not in AD patients. These results open perspectives and encourage further clinical studies to confirm the validity and utility of ecto-GPR37 as a potential PD biomarker.


Assuntos
Doença de Parkinson/diagnóstico , Receptores Acoplados a Proteínas G/análise , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/genética , Biomarcadores , Química Encefálica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/biossíntese , Receptores Acoplados a Proteínas G/biossíntese , Receptores Acoplados a Proteínas G/genética , Reprodutibilidade dos Testes , Substância Negra/metabolismo , Regulação para Cima , alfa-Sinucleína/líquido cefalorraquidiano
14.
Lancet Neurol ; 20(3): 235-246, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33609480

RESUMO

Sporadic Creutzfeldt-Jakob disease is a fatal neurodegenerative disease caused by misfolded prion proteins (PrPSc). Effective therapeutics are currently not available and accurate diagnosis can be challenging. Clinical diagnostic criteria use a combination of characteristic neuropsychiatric symptoms, CSF proteins 14-3-3, MRI, and EEG. Supportive biomarkers, such as high CSF total tau, could aid the diagnostic process. However, discordant studies have led to controversies about the clinical value of some established surrogate biomarkers. Development and clinical application of disease-specific protein aggregation and amplification assays, such as real-time quaking induced conversion (RT-QuIC), have constituted major breakthroughs for the confident pre-mortem diagnosis of sporadic Creutzfeldt-Jakob disease. Updated criteria for the diagnosis of sporadic Creutzfeldt-Jakob disease, including application of RT-QuIC, should improve early clinical confirmation, surveillance, assessment of PrPSc seeding activity in different tissues, and trial monitoring. Moreover, emerging blood-based, prognostic, and potentially pre-symptomatic biomarker candidates are under investigation.


Assuntos
Biomarcadores/análise , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/diagnóstico por imagem , Síndrome de Creutzfeldt-Jakob/genética , Marcadores Genéticos , Guias como Assunto , Humanos , Neuroimagem , Sensibilidade e Especificidade
15.
Acta Neuropathol ; 141(4): 565-584, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33547932

RESUMO

Progressive motor alterations and selective death of striatal medium spiny neurons (MSNs) are key pathological hallmarks of Huntington's disease (HD), a neurodegenerative condition caused by a CAG trinucleotide repeat expansion in the coding region of the huntingtin (HTT) gene. Most research has focused on the pathogenic effects of the resultant protein product(s); however, growing evidence indicates that expanded CAG repeats within mutant HTT mRNA and derived small CAG repeat RNAs (sCAG) participate in HD pathophysiology. The individual contribution of protein versus RNA toxicity to HD pathophysiology remains largely uncharacterized and the role of other classes of small RNAs (sRNA) that are strongly perturbed in HD is uncertain. Here, we demonstrate that sRNA produced in the putamen of HD patients (HD-sRNA-PT) are sufficient to induce HD pathology in vivo. Mice injected with HD-sRNA-PT show motor abnormalities, decreased levels of striatal HD-related proteins, disruption of the indirect pathway, and strong transcriptional abnormalities, paralleling human HD pathology. Importantly, we show that the specific blockage of sCAG mitigates HD-sRNA-PT neurotoxicity only to a limited extent. This observation prompted us to identify other sRNA species enriched in HD putamen with neurotoxic potential. We detected high levels of tRNA fragments (tRFs) in HD putamen, and we validated the neurotoxic potential of an Alanine derived tRF in vitro. These results highlight that HD-sRNA-PT are neurotoxic, and suggest that multiple sRNA species contribute to striatal dysfunction and general transcriptomic changes, favoring therapeutic strategies based on the blockage of sRNA-mediated toxicity.


Assuntos
Encéfalo/patologia , Doença de Huntington , Pequeno RNA não Traduzido/farmacologia , Animais , Modelos Animais de Doenças , Xenoenxertos , Humanos , Camundongos , Expansão das Repetições de Trinucleotídeos
16.
Front Bioeng Biotechnol ; 8: 586890, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330419

RESUMO

The real-time quaking-induced conversion (RT-QuIC) assay is a highly reproducible and robust methodology exhibiting an excellent pre-mortem diagnostic accuracy for prion diseases. However, the protocols might be time-consuming and improvement of the detection technology is needed. In the present study, we investigated the influence of a pre-analytical cerebrospinal fluid (CSF) treatment with proteinase K (PK) on the kinetic of the RT-QuIC signal response. For this purpose, we added PK at different concentrations in RT-QuIC reactions seeded with Creutzfeldt-Jakob disease (sCJD) CSF. We observed that a mild pre-analytical PK treatment of CSF samples resulted in an increased seeding efficiency of the RT-QuIC reaction. Quantitative seeding parameters, such as a higher area under the curve (AUC) value or a shorter lag phase indicated a higher conversion efficiency after treatment. The diagnostic accuracy resulting from 2 µg/ml PK treatment was analyzed in a retrospective study, where we obtained a sensitivity of 89%. Additionally, we analyzed the agreement with the previously established standard RT-QuIC protocol without PK treatment in a prospective study. Here, we found an overall agreement of 94% to 96%. A Cohen's kappa of 0.9036 (95% CI: 0.8114-0.9958) indicates an almost perfect agreement between both protocols. In conclusion, the outcome of our study can be used for a further optimization of the RT-QuIC assay in particular for a reduction of the testing time.

17.
Int J Mol Sci ; 21(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33213069

RESUMO

Sporadic amyotrophic lateral sclerosis (sALS) is a fatal progressive neurodegenerative disease affecting upper and lower motor neurons. Biomarkers are useful to facilitate the diagnosis and/or prognosis of patients and to reveal possible mechanistic clues about the disease. This study aimed to identify and validate selected putative biomarkers in the cerebrospinal fluid (CSF) of sALS patients at early disease stages compared with age-matched controls and with other neurodegenerative diseases including Alzheimer disease (AD), spinal muscular atrophy type III (SMA), frontotemporal dementia behavioral variant (FTD), and multiple sclerosis (MS). SWATH acquisition on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for protein quantitation, and ELISA for validation, were used in CSF samples of sALS cases at early stages of the disease. Analysis of mRNA and protein expression was carried out in the anterior horn of the lumbar spinal cord in post-mortem tissue of sALS cases (terminal stage) and controls using RTq-PCR, and Western blotting, and immunohistochemistry, respectively. SWATH acquisition on liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed 51 differentially expressed proteins in the CSF in sALS. Receiver operating characteristic (ROC) curves showed CXCL12 to be the most valuable candidate biomarker. We validated the values of CXCL12 in CSF with ELISA in two different cohorts. Besides sALS, increased CXCL12 levels were found in MS but were not altered in AD, SMA, and FTD. Therefore, increased CXCL12 levels in the CSF can be useful in the diagnoses of MS and sALS in the context of the clinical settings. CXCL12 immunoreactivity was localized in motor neurons in control and sALS, and in a few glial cells in sALS at the terminal stage; CXCR4 was in a subset of oligodendroglial-like cells and axonal ballooning of motor neurons in sALS; and CXCR7 in motor neurons in control and sALS, and reactive astrocytes in the pyramidal tracts in terminal sALS. CXCL12/CXCR4/CXCR7 axis in the spinal cord probably plays a complex role in inflammation, oligodendroglial and astrocyte signaling, and neuronal and axonal preservation in sALS.


Assuntos
Esclerose Lateral Amiotrófica/líquido cefalorraquidiano , Quimiocina CXCL12/líquido cefalorraquidiano , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Feminino , Demência Frontotemporal/líquido cefalorraquidiano , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios Motores/metabolismo , Neuroglia/metabolismo , Receptores CXCR/metabolismo , Receptores CXCR4/metabolismo
18.
Int J Mol Sci ; 21(17)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878083

RESUMO

Alzheimer's type dementia (AD) exhibits clinical heterogeneity, as well as differences in disease progression, as a subset of patients with a clinical diagnosis of AD progresses more rapidly (rpAD) than the typical AD of slow progression (spAD). Previous findings indicate that low cerebrospinal fluid (CSF) content of cell-free mitochondrial DNA (cf-mtDNA) precedes clinical signs of AD. We have now investigated the relationship between cf-mtDNA and other biomarkers of AD to determine whether a particular biomarker profile underlies the different rates of AD progression. We measured the content of cf-mtDNA, beta-amyloid peptide 1-42 (Aß), total tau protein (t-tau) and phosphorylated tau (p-tau) in the CSF from a cohort of 95 subjects consisting of 49 controls with a neurologic disorder without dementia, 30 patients with a clinical diagnosis of spAD and 16 patients with rpAD. We found that 37% of controls met at least one AD biomarker criteria, while 53% and 44% of subjects with spAD and rpAD, respectively, did not fulfill the two core AD biomarker criteria: high t-tau and low Aß in CSF. In the whole cohort, patients with spAD, but not with rpAD, showed a statistically significant 44% decrease of cf-mtDNA in CSF compared to control. When the cohort included only subjects selected by Aß and t-tau biomarker criteria, the spAD group showed a larger decrease of cf-mtDNA (69%), whereas in the rpAD group cf-mtDNA levels remained unaltered. In the whole cohort, the CSF levels of cf-mtDNA correlated positively with Aß and negatively with p-tau. Moreover, the ratio between cf-mtDNA and p-tau increased the sensitivity and specificity of spAD diagnosis up to 93% and 94%, respectively, in the biomarker-selected cohort. These results show that the content of cf-mtDNA in CSF correlates with the earliest pathological markers of the disease, Aß and p-tau, but not with the marker of neuronal damage t-tau. Moreover, these findings confirm that low CSF content of cf-mtDNA is a biomarker for the early detection of AD and support the hypothesis that low cf-mtDNA, together with low Aß and high p-tau, constitute a distinctive CSF biomarker profile that differentiates spAD from other neurological disorders.


Assuntos
Doença de Alzheimer/patologia , Biomarcadores/líquido cefalorraquidiano , DNA Mitocondrial/líquido cefalorraquidiano , DNA Mitocondrial/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/classificação , Estudos de Casos e Controles , Estudos de Coortes , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
19.
Artigo em Inglês | MEDLINE | ID: mdl-32984276

RESUMO

Autophagy is a dynamic intracellular mechanism involved in protein and organelle turnover through lysosomal degradation. When properly regulated, autophagy supports normal cellular and developmental processes, whereas defects in autophagic degradation have been associated with several pathologies, including prion diseases. Prion diseases, or transmissible spongiform encephalopathies (TSE), are a group of fatal neurodegenerative disorders characterized by the accumulation of the pathological misfolded isoform (PrPSc) of the physiological cellular prion protein (PrPc) in the central nervous system. Autophagic vacuoles have been described in experimental models of TSE and in the natural disease in humans. The precise connection of this process with prion-related neuropathology, or even whether autophagy is completely beneficial or pathogenic during neurodegeneration, is poorly understood. Thus, the biological role of autophagy in these diseases is still open to debate. During the last years, researchers have used a wide range of morphological, genetic and biochemical methods to monitor and manipulate the autophagic pathway and thus determine the specific role of this process in TSE. It has been suggested that PrPc could play a crucial role in modulating the autophagic pathway in neuronal cells, and the presence of abnormal autophagic activity has been frequently observed in several models of TSE both in vitro and in vivo, as well as in human prion diseases. Altogether, these findings suggest that autophagy is implicated in prion neuropathology and points to an impairment or failure of the process, potentially contributing to the pathogenesis of the disease. Additionally, autophagy is now emerging as a host defense response in controlling prion infection that plays a protective role by facilitating the clearance of aggregation-prone proteins accumulated within neurons. Since autophagy is one of the pathways of PrPSc degradation, and drug-induced stimulation of autophagic flux (the dynamic process of autophagic degradation activity) produces anti-prion effects, new treatments based on its activation have been tested to develop therapeutic strategies for prion diseases. In this review, we summarize previous and recent findings concerning the role of autophagy in TSE.

20.
Alzheimers Dement ; 16(10): 1438-1447, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32614136

RESUMO

INTRODUCTION: We developed a prognostic model for overall survival after diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) using data from a German surveillance study. METHODS: We included 1226 sCJD cases (median age 66 years, range 19-89 years; 56.8% women with information on age, sex, codon 129 genotype, 14-3-3 in the cerebrospinal fluid (CSF), and CSF tau concentrations. The prognostic accuracy for overall survival was measured by the c statistics of multivariable Cox proportional hazard models. A score chart was derived to predict 6-month survival and median survival time. RESULTS: A model containing age, sex, codon 129 genotype, and CSF tau (with two-way interactions) was selected as the model with the highest c statistic (0.686, 95% confidence interval: 0.665-0.707) in a cross-validation approach. DISCUSSION: We developed the first prognostic model for overall survival of sCJD patients based on readily available information only. The developed score chart serves as a hands-on prediction tool for clinical practice.


Assuntos
Síndrome de Creutzfeldt-Jakob/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/líquido cefalorraquidiano , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...