Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33046494

RESUMO

Bacterial pathogens are rapidly evolving resistance to all clinically available antibiotics. One part of the solution to this complex issue is to better understand the resistance mechanisms to new and existing antibiotics. Here, we focus on two antibiotics. Teixobactin is a recently discovered promising antibiotic that is claimed to "kill pathogens without detectable resistance" (L. L. Ling, T. Schneider, A. J. Peoples, A. L. Spoering, et al., Nature 517:455-459, 2015, https://doi.org/10.1038/nature14098). Moenomycin A has been extensively used in animal husbandry for over 50 years with no meaningful antibiotic resistance arising. However, the nature, mechanisms, and consequences of the evolution of resistance to these "resistance-proof" compounds have not been investigated. Through a fusion of experimental evolution, whole-genome sequencing, and structural biology, we show that Staphylococcus aureus can develop significant resistance to both antibiotics in clinically meaningful timescales. The magnitude of evolved resistance to Arg10-teixobactin is 300-fold less than to moenomycin A over 45 days, and these are 2,500-fold and 8-fold less than evolved resistance to rifampicin (control), respectively. We have identified a core suite of key mutations, which correlate with the evolution of resistance, that are in genes involved in cell wall modulation, lipid synthesis, and energy metabolism. We show the evolution of resistance to these antimicrobials translates into significant cross-resistance against other clinically relevant antibiotics for moenomycin A but not Arg10-teixobactin. Lastly, we show that resistance is rapidly lost in the absence of antibiotic selection, especially for Arg10-teixobactin. These findings indicate that teixobactin is worth pursuing for clinical applications and provide evidence to inform strategies for future compound development and clinical management.


Assuntos
Depsipeptídeos , Animais , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Staphylococcus aureus/genética
2.
Pharmaceutics ; 10(4)2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30314324

RESUMO

Teixobactin is a highly potent cyclic depsipeptide which kills a broad range of multi-drug resistant, Gram-positive bacteria, such as Methicillin-resistant Staphylococcus aureus (MRSA) without detectable resistance. In this work, we describe the design and rapid synthesis of novel teixobactin analogues containing two cysteine moieties, and the corresponding disulfide-bridged cyclic analogues. These analogues differ from previously reported analogues, such as an Arg10-teixobactin, in terms of their macrocyclic ring size, and feature a disulfide bridge instead of an ester linkage. The new teixobactin analogues were screened against Methicillin-resistant Staphylococcus aureus and Methicillin-sensitive Staphylococcus aureus. Interestingly, one teixobactin analogue containing all l-amino acid building blocks showed antibacterial activity against MRSA for the first time. Our data indicates that macrocyclisation of teixobactin analogues with disulfide bridging is important for improved antibacterial activity. In our work, we have demonstrated the unprecedented use of a disulfide bridge in constructing the macrocyclic ring of teixobactin analogues.

3.
J Med Chem ; 61(5): 2009-2017, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29363971

RESUMO

The cyclic depsipeptide, teixobactin, kills a number of Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), and Mycobacterium tuberculosis without detectable resistance. To date, teixobactin is the only molecule in its class that has shown in vivo antibacterial efficacy. In this work, we designed and synthesized 10 new in vivo ready teixobactin analogues. These analogues showed highly potent antibacterial activities against Staphylococcus aureus, MRSA, and vancomycin-resistant enterococci (VRE) in vitro. One analogue, d-Arg4-Leu10-teixobactin, 2, was found to be noncytotoxic in vitro and in vivo. Moreover, topical instillation of peptide 2 in a mouse model of S. aureus keratitis decreased the bacterial bioburden (>99.0% reduction) and corneal edema significantly as compared to untreated mouse corneas. Collectively, our results have established the high therapeutic potential of a teixobactin analogue in attenuating bacterial infections and associated severities in vivo.


Assuntos
Depsipeptídeos/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Animais , Depsipeptídeos/síntese química , Desenho de Fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Humanos , Ceratite/tratamento farmacológico , Ceratite/microbiologia , Camundongos , Infecções Estafilocócicas/tratamento farmacológico , Resistência a Vancomicina
4.
Chem Commun (Camb) ; 53(55): 7788-7791, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28650495

RESUMO

The recently discovered cyclic depsipeptide, teixobactin, is a highly potent antibiotic against multi-drug resistant pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) and Mycobaterium tuberculosis. It comprises of 4 D amino acids and a rare l-allo-enduracididine amino acid. The synthesis of a properly protected l-allo-enduracididine amino acid and its incorporation into teixobactin is time consuming, synthetically challenging and low yielding and is therefore a major bottleneck in the development of potent analogues of teixobactin. In this article, we have synthesised 8 analogues of teixobactin using commercially available building blocks by replacing the l-allo-enduracididine amino acid with its isosteres. Furthermore, we have tested all the compounds against a panel of Gram positive bacteria including MRSA and explained the observed trend in biological activity. Although all the analogues were active, three analogues from this work, showed very promising activity against MRSA (MIC 1 µg mL-1). We can conclude that amino acids which are the closest isosteres of l-allo-enduracididine are the key to synthesising simplified potent analogues of teixobactin using rapid syntheses and improved yields.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Depsipeptídeos/química , Depsipeptídeos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Pirrolidinas/química , Pirrolidinas/farmacologia , Antibacterianos/química , Depsipeptídeos/síntese química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
5.
Front Microbiol ; 8: 439, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28352265

RESUMO

The myxobacterium Myxococcus xanthus is a predatory member of the soil microfauna, able to consume bacteria (Gram-negative, Gram-positive), archaea, and fungi. Many potential prey of M. xanthus communicate amongst themselves using acyl homoserine lactones (AHLs) as quorum signals. M. xanthus cannot itself produce AHLs, but could potentially benefit by responding to exogenous AHLs produced during signaling between proximal prey. Four AHLs of different side chain length were tested and all found to delay sporulation of M. xanthus vegetative cells, and to stimulate germination of myxospores, increasing the proportion of predatory vegetative cells in the population. The predatory activity and expansion rates of M. xanthus colonies were also found to be stimulated by AHLs. Thermally inactivated AHLs had no effect on M. xanthus cells, and the response to AHLs depended (non-linearly) on the length of AHL side chain, suggesting that the effect of AHLs was mediated by specific signaling within M. xanthus, rather than being a consequence of the chemical or physical properties of AHLs. Therefore, it seems that the presence of xenic quorum signaling molecules enhances the predatory activity of M. xanthus. AHLs increase the proportion of the population capable of predation, and stimulate the motility and predatory activity of vegetative cells. We therefore propose that in the wild, M. xanthus uses AHLs as markers of nearby prey, potentially eavesdropping on the conversations between prey organisms.

6.
Chem Sci ; 8(12): 8183-8192, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29568465

RESUMO

Teixobactin is a highly promising antibacterial depsipeptide consisting of four d-amino acids and a rare l-allo-enduracididine amino acid. l-allo-Enduracididine is reported to be important for the highly potent antibacterial activity of teixobactin. However, it is also a key limiting factor in the development of potent teixobactin analogues due to several synthetic challenges such as it is not commercially available, requires a multistep synthesis, long and repetitive couplings (16-30 hours). Due to all these challenges, the total synthesis of teixobactin is laborious and low yielding (3.3%). In this work, we have identified a unique design and developed a rapid synthesis (10 min µwave assisted coupling per amino acid, 30 min cyclisation) of several highly potent analogues of teixobactin with yields of 10-24% by replacing the l-allo-enduracididine with commercially available non-polar residues such as leucine and isoleucine. Most importantly, the Leu10-teixobactin and Ile10-teixobactin analogues have shown highly potent antibacterial activity against a broader panel of MRSA and Enterococcus faecalis (VRE). Furthermore, these synthetic analogues displayed identical antibacterial activity to natural teixobactin (MIC 0.25 µg mL-1) against MRSA ATCC 33591 despite their simpler design and ease of synthesis. We have confirmed lipid II binding and measured the binding affinities of individual amino acid residues of Ala10-teixobactin towards geranyl pyrophosphate by NMR to understand the nature and strength of binding interactions. Contrary to current understanding, we have shown that a cationic amino acid at position 10 is not essential for target (lipid II) binding and potent antibacterial activity of teixobactin. We thus provide strong evidence contrary to the many assumptions made about the mechanism of action of this exciting new antibiotic. Introduction of a non-cationic residue at position 10 allows for tremendous diversification in the design and synthesis of highly potent teixobactin analogues and lays the foundations for the development of teixobactin analogues as new drug-like molecules to target MRSA and Mycobacterium tuberculosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...