Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Molecules ; 27(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35458795

RESUMO

Peaches are grown in many Egyptian orchards for local and global fresh market sales. The interior fruit tissue breakdown (IFTB), often resulting in decayed peaches, is a severe problem during marketing. Therefore, to minimize FTB of peaches, in this study, gum arabic (GA) and polyvinylpyrrolidone (PVP) were mixed with different concentrations of salicylic acid (SA) (0, 1, and 2 mM) and were applied as edible coating to extend the shelf life of peach fruits. Mature peaches were selected and harvested when peaches reached total soluble solid content (SSC: 8.5%) and fruit firmness of about 47 N. Fruits were coated and stored at room temperature (26 ± 1 °C and air humidity 51 ± 1%) for 10 days during two seasons: 2020 and 2021. Fruit coated with GA/PVP-SA 2 mM showed a significant (p < 0.05) inhibition in degrading enzyme activities (CWDEs), such as lipoxygenase (LOX), cellulase (CEL), and pectinase (PT), compared to uncoated and coated fruits during the shelf-life period. Hence, cell wall compartments were maintained. Consequently, there was a reduction in browning symptoms in fruits by inhibiting polyphenol oxidase (PPO) and phenylalanine ammonia-lyase (PAL) activities. Thus, the fruit skin browning index showed almost no symptoms. The lipid peroxidation process and ionic permeability declined as well. The result suggests that, by applying GA/PVP-SA 2 mM as an edible coating, fruit tissue breakdown can be minimized, and the shelf life of peach can be extended up to 10 days without symptoms of tissue breakdown.


Assuntos
Prunus persica , Frutas/metabolismo , Goma Arábica , Povidona , Ácido Salicílico/metabolismo
2.
Foods ; 10(11)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34828922

RESUMO

The Rutab date involves a physiological process by which the fruit turns completely ripe. The objective of this study was to research the effect of ATP-treated fruit to improve their biologically active compounds of the Rutab process of the 'Zagloul' date during shelf-life. Fruits at full color (red) were dipped in 0, 1, 1.5 mmol L-1 ATP solution for 10 min, and then stored at room temperature (27 ± 1 °C) with a relative humidity of (67 ± 4 RH%) for 12 d. We found that ATP treatment, especially at 1.5 mM, enhances the Rutab stage of date fruit, and certain biologically active compounds such as total phenols and flavonoids, in all ATP treatments compared to untreated fruits. ATP enhanced the loss of tannin compounds in fruit but had no impact on the change in fruit moisture percentage of fruit during storage. The treatments did affect the changes in total sugar content and activated the sucrose enzymes, i.e., acid invertase (AI), neutral invertase (NI), sucrose synthase-cleavage (SS-c), and sucrose synthase-synthesis (SS-s) during storage. Interestingly, immersion in 1.5 mM ATP forced the date fruit to reach the Rutab stage during storage. These results indicated that the dose of ATP (1.5 mM) is a new potential tool that pushes the fruits to regular ripening after harvest, thus reducing the losses in the fruits during the production process. A linear model could be satisfactorily used for predicting the properties of the treated date with ATP 1.5 mM at different shelf-life durations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...