Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38928054

RESUMO

Cancers are causing millions of deaths and leaving a huge clinical and economic burden. High costs of cancer drugs are limiting their access to the growing number of cancer cases. The development of more affordable alternative therapy could reach more patients. As gut microbiota plays a significant role in the development and treatment of cancer, microbiome-targeted therapy has gained more attention in recent years. Dietary and natural compounds can modulate gut microbiota composition while providing broader and more accessible access to medicine. Tea compounds have been shown to have anti-cancer properties as well as modulate the gut microbiota and their related metabolites. However, there is no comprehensive review that focuses on the gut modulatory effects of tea compounds and their impact on reshaping the metabolic profiles, particularly in cancer models. In this review, the effects of different tea compounds on gut microbiota in cancer settings are discussed. Furthermore, the relationship between these modulated bacteria and their related metabolites, along with the mechanisms of how these changes led to cancer intervention are summarized.


Assuntos
Microbioma Gastrointestinal , Neoplasias , Chá , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Chá/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/microbiologia , Animais , Biomarcadores , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
2.
J Agric Food Chem ; 72(15): 8536-8549, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38575146

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent metabolic disease that has no effective treatment. Our proprietary probiotic mixture, Prohep, has been proven in a previous study to be helpful in reducing hepatocellular carcinoma (HCC) in vivo. However, its prospective benefits on the treatment of other liver diseases such as MASLD, which is one of the major risk factors in the development of HCC, are unclear. To investigate the potential of Prohep in modulating the development and progression of MASLD, we first explored the effect of Prohep supplementation via voluntary intake in a high-fat diet (HFD)-induced MASLD/metabolic dysfunction-associated steatohepatitis (MASH) murine model. Our results indicated that Prohep alleviated HFD-induced liver steatosis and reduced excessive hepatic lipid accumulation and improved the plasma lipid profile when compared with HFD-fed control mice through suppressing hepatic de novo lipogenesis and cholesterol biosynthesis gene expressions. In addition, Prohep was able to modulate the gut microbiome, modify the bile acid (BA) profile, and elevate fecal short-chain fatty acid (SCFA) levels. Next, in a prolonged HFD-feeding MASLD/MASH model, we observed the effectiveness of Prohep in preventing the transition from MASLD to MASH via amelioration in hepatic steatosis, inflammation, and fibrosis. Taken together, Prohep could ameliorate HFD-induced MASLD and control the MASLD-to-MASH progression in mice. Our findings provide distinctive insights into the development of novel microbial therapy for the management of MASLD and MASH.


Assuntos
Carcinoma Hepatocelular , Fígado Gorduroso , Microbioma Gastrointestinal , Neoplasias Hepáticas , Probióticos , Animais , Camundongos , Metabolismo dos Lipídeos , Modelos Animais de Doenças , Dieta Hiperlipídica/efeitos adversos , Lipídeos
3.
Biomed Pharmacother ; 174: 116471, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547764

RESUMO

The mast cell receptor Mrgprb2, a mouse orthologue of human Mrgprx2, is known as an inflammatory receptor and its elevated expression is associated with various diseases such as ulcerative colitis. We aimed to elucidate the role of Mrgprb2/x2 and the effect of its ligands on a chemically induced murine colitis model. We showed that in Mrgprb2-/- mice, there is a differential regulation of cytokine releases in the blood plasma and severe colonic damages after DSS treatment. Unexpectedly, we demonstrated that known Mrgprb2/x2 agonists (peptide P17, P17 analogues and CST-14) and antagonist (GE1111) similarly increased the survival rate of WT mice subjected to 4% DSS-induced colitis, ameliorated the colonic damages of 2.5% DSS-induced colitis, restored major protein mRNA expression involved in colon integrity, reduced CD68+ and F4/80+ immune cell infiltration and restored cytokine levels. Collectively, our findings highlight the eminent role of Mrpgrb2/x2 in conferring a beneficial effect in the colitis model, and this significance is demonstrated by the heightened severity of colitis with altered cytokine releases and inflammatory immune cell infiltration observed in the Mrgprb2 knockout mice. Elevated expression of Mrgprb2 in WT colitis murine models may represent the organism's adaptive protective mechanism since Mrgprb2 knockout results in severe colitis. On the other hand, both agonist and antagonist of Mrgprb2 analogously mitigated the severity of colitis in DSS-induced colitis model by altering Mrgprb2 expression, immune cell infiltration and inflammatory cytokine releases.


Assuntos
Colite , Citocinas , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite/patologia , Camundongos , Citocinas/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Colo/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Masculino , Modelos Animais de Doenças , Receptores de Neuropeptídeos/agonistas , Receptores de Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/genética
4.
Biomed Pharmacother ; 164: 114973, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37269808

RESUMO

The high prevalence of colorectal cancer (CRC) and its leading death causing rate have placed a considerable burden on patients and healthcare providers. There is a need for a therapy that has fewer adverse effects and greater efficiency. Zearalenone (ZEA), an estrogenic mycotoxin, has been demonstrated to exert apoptotic properties when administrated in higher doses. However, it is unclear whether such apoptotic effect remains valid in an in vivo setting. The current study aimed to investigate the effect of ZEA on CRC and its underlying mechanisms in the azoxymethane/ dextran sodium sulfate (AOM/DSS) model. Our results revealed that ZEA significantly lowered the total number of tumours, colon weight, colonic crypt depth, collagen fibrosis and spleen weight. ZEA suppressed Ras/Raf/ERK/cyclin D1 pathway, increasing the expression of apoptosis parker, cleaved caspase 3, while decreasing the expression of proliferative marker, Ki67 and cyclin D1. The gut microbiota composition in ZEA group showed higher stability and lower vulnerability in the microbial community when compared to AOM/DSS group. ZEA increased the abundance of short chain fatty acids (SCFAs) producing bacteria unidentified Ruminococcaceae, Parabacteroidies and Blautia, as well as the faecal acetate content. Notably, unidentified Ruminococcaceae and Parabacteroidies were substantially correlated with the decrease in tumour count. Overall, ZEA demonstrated a promising inhibitory effect on colorectal tumorigenesis and exhibited the potential for further development as a CRC treatment.


Assuntos
Colite , Neoplasias Colorretais , Zearalenona , Humanos , Animais , Camundongos , Neoplasias Colorretais/patologia , Zearalenona/farmacologia , Zearalenona/metabolismo , Zearalenona/uso terapêutico , Ciclina D1/metabolismo , Sistema de Sinalização das MAP Quinases , Colite/metabolismo , Carcinogênese , Transformação Celular Neoplásica , Azoximetano/uso terapêutico , Bactérias/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
5.
Comput Struct Biotechnol J ; 21: 1785-1796, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36915382

RESUMO

Zearalenone (ZEA), a secondary metabolite of Fusarium fungi found in cereal-based foods, promotes the growth of colon, breast, and prostate cancer cells in vitro. However, the lack of animal studies hinders a deeper mechanistic understanding of the cancer-promoting effects of ZEA. This study aimed to determine the effect of ZEA on colon cancer progression and its underlying mechanisms. Through integrative analyses of transcriptomics, metabolomics, metagenomics, and host phenotypes, we investigated the impact of a 4-week ZEA intervention on colorectal cancer in xenograft mice. Our results showed a twofold increase in tumor weight with the 4-week ZEA intervention. ZEA exposure significantly increased the mRNA and protein levels of BEST4, DGKB, and Ki67 and the phosphorylation levels of ERK1/2 and AKT. Serum metabolomic analysis revealed that the levels of amino acids, including histidine, arginine, citrulline, and glycine, decreased significantly in the ZEA group. Furthermore, ZEA lowered the alpha diversity of the gut microbiota and reduced the abundance of nine genera, including Tuzzerella and Rikenella. Further association analysis indicated that Tuzzerella was negatively associated with the expression of BEST4 and DGKB genes, serum uric acid levels, and tumor weight. Additionally, circulatory hippuric acid levels positively correlated with tumor weight and the expression of oncogenic genes, including ROBO3, JAK3, and BEST4. Altogether, our results indicated that ZEA promotes colon cancer progression by enhancing the BEST4/AKT/ERK1/2 pathway, lowering circulatory amino acid concentrations, altering gut microbiota composition, and suppressing short chain fatty acids production.

6.
Antioxidants (Basel) ; 11(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36139789

RESUMO

Colorectal cancer (CRC) is one of the most common and fatal cancers worldwide, yet therapeutic options for CRC often exhibit strong side effects which cause patients' well-being to deteriorate. Theabrownin (TB), an antioxidant from Pu-erh tea, has previously been reported to have antitumor effects on non-small-cell lung cancer, osteosarcoma, hepatocellular carcinoma, gliomas, and melanoma. However, the potential antitumor effect of TB on CRC has not previously been investigated in vivo. The present study therefore aimed to investigate the antitumor effect of TB on CRC and the underlying mechanisms. Azoxymethane (AOM)/dextran sodium sulphate (DSS) was used to establish CRC tumorigenesis in a wild type mice model. TB was found to significantly reduce the total tumor count and improve crypt length and fibrosis of the colon when compared to the AOM/DSS group. Immunohistochemistry staining shows that the expression of the proliferation marker, Ki67 was reduced, while cleaved caspase 3 was increased in the TB group. Furthermore, TB significantly reduced phosphorylation of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), and the downstream mechanistic target of rapamycin (mTOR)and cyclin D1 protein expression, which might contribute to cell proliferation suppression and apoptosis enhancement. The 16s rRNA sequencing revealed that TB significantly modulated the gut microbiota composition in AOM/DSS mice. TB increased the abundance of short chain fatty acid as well as SCFA-producing Prevotellaceae and Alloprevotella, and it decreased CRC-related Bacteroidceae and Bacteroides. Taken together, our results suggest that TB could inhibit tumor formation and potentially be a promising candidate for CRC treatment.

7.
Biomedicines ; 10(6)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35740464

RESUMO

Chronic liver diseases pose a substantial health burden worldwide, with approximately two million deaths each year. Branched-chain amino acids (BCAAs)-valine, leucine, and isoleucine-are a group of essential amino acids that are essential for human health. Despite the necessity of a dietary intake of BCAA, emerging data indicate the undeniable correlation between elevated circulating BCAA levels and chronic liver diseases, including non-alcoholic fatty liver diseases (NAFLD), cirrhosis, and hepatocellular carcinoma (HCC). Moreover, circulatory BCAAs were positively associated with a higher cholesterol level, liver fat content, and insulin resistance (IR). However, BCAA supplementation was found to provide positive outcomes in cirrhosis and HCC patients. This review will attempt to address the contradictory claims found in the literature, with a special focus on BCAAs' distribution, key signaling pathways, and the modulation of gut microbiota. This should provide a better understanding of BCAAs' possible contribution to liver health.

8.
Pathogens ; 10(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206200

RESUMO

Liver cancer, predominantly hepatocellular carcinoma (HCC), is the third leading cause of cancer-related deaths worldwide. Emerging data highlight the importance of gut homeostasis in the pathogenesis of HCC. Clinical and translational studies revealed the patterns of dysbiosis in HCC patients and their potential role for HCC diagnosis. Research on underlying mechanisms of dysbiosis in HCC development pointed out the direction for improving the treatment and prevention. Despite missing clinical studies, animal models showed that modulation of the gut microbiota by probiotics may become a new way to treat or prevent HCC development.

9.
Sci Rep ; 11(1): 7403, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795755

RESUMO

Colon cancer is one of the leading causes of cancer death worldwide. It is widely believed that environmental factors contribute to colon cancer development. Zearalenone (ZEA) is non-steroidal estrogenic mycotoxin that is widely found in the human diet and animal feeds. Most cancer studies of ZEA focused on estrogen sensitive cancers, while few focused on other types, such as colon cancer; despite the gastrointestinal tract being the first barrier exposed to food contaminants. This study investigated the stimulatory effects of ZEA on colon cancer cell lines and their underlying molecular mechanisms. ZEA promoted anchorage independent cell growth and cell cycle progression through promoting G1-to-S phase transition. Proliferative marker, cyclin D1 and Ki67 were found to be upregulated upon ZEA treatment. G protein-coupled estrogenic receptor 1 (GPER) protein expression was promoted upon ZEA treatment suggesting the involvement of GPER. The growth promoting effect mediated through GPER were suppressed by its antagonist G15. ZEA were found to promote the downstream parallel pathway, MAPK signaling pathway and Hippo pathway effector YAP1. Altogether, our observations suggest a novel mechanism by which ZEA could promote cancer growth and provide a new perspective on the carcinogenicity of ZEA.


Assuntos
Antineoplásicos Hormonais/administração & dosagem , Neoplasias do Colo/metabolismo , Estrogênios não Esteroides/administração & dosagem , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Zearalenona/administração & dosagem , Transporte Ativo do Núcleo Celular , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Biomarcadores Tumorais , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/genética , Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...