Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Virol ; 96(5): e29669, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38773784

RESUMO

Chronic hepatitis B virus (HBV) infection remains a significant global health challenge due to its link to severe conditions like HBV-related cirrhosis and hepatocellular carcinoma (HCC). Although current treatments effectively reduce viral levels, they have limited impact on certain HBV elements, namely hepatitis B surface antigen (HBsAg) and covalently closed circular DNA (cccDNA). This highlights the urgent need for innovative pharmaceutical and biological interventions that can disrupt HBsAg production originating from cccDNA. In this study, we identified a natural furanocoumarin compound, Imperatorin, which markedly inhibited the expression of HBsAg from cccDNA, by screening a library of natural compounds derived from Chinese herbal medicines using ELISA assay and qRT-PCR. The pharmacodynamics study of Imperatorin was explored on HBV infected HepG2-NTCP/PHHs and HBV-infected humanized mouse model. Proteome analysis was performed on HBV infected HepG2-NTCP cells following Imperatorin treatment. Molecular docking and bio-layer interferometry (BLI) were used for finding the target of Imperatorin. Our findings demonstrated Imperatorin remarkably reduced the level of HBsAg, HBV RNAs, HBV DNA and transcriptional activity of cccDNA both in vitro and in vivo. Additionally, Imperatorin effectively restrained the actions of HBV promoters responsible for cccDNA transcription. Mechanistic study revealed that Imperatorin directly binds to ERK and subsequently interfering with the activation of CAMP response element-binding protein (CREB), a crucial transcriptional factor for HBV and has been demonstrated to bind to the PreS2/S and X promoter regions of HBV. Importantly, the absence of ERK could nullify the antiviral impact triggered by Imperatorin. Collectively, the natural compound Imperatorin may be an effective candidate agent for inhibiting HBsAg production and cccDNA transcription by impeding the activities of HBV promoters through ERK-CREB axis.


Assuntos
DNA Circular , Furocumarinas , Antígenos de Superfície da Hepatite B , Vírus da Hepatite B , Transcrição Gênica , Furocumarinas/farmacologia , Humanos , Animais , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Antígenos de Superfície da Hepatite B/metabolismo , Antígenos de Superfície da Hepatite B/genética , Células Hep G2 , Camundongos , DNA Circular/genética , DNA Circular/metabolismo , Transcrição Gênica/efeitos dos fármacos , Antivirais/farmacologia , DNA Viral , Simulação de Acoplamento Molecular , Replicação Viral/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/virologia , Modelos Animais de Doenças , Regiões Promotoras Genéticas
2.
Pharmacol Res ; 186: 106549, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36368452

RESUMO

Rheumatoid arthritis (RA) is a chronic systemic inflammatory disorder which is associated with the dysregulation of autoimmune response. In recent years, early diagnosis, aggressive treatment and alternative therapeutic options of disease-modifying anti-rheumatic drugs (DMARDs) markedly improve both the management and long-term prognosis of RA. Since the discovery of non-coding RNA (ncRNA) including microRNA (miRNA), long non-coding RNA (lncRNA) and others, their altered expressions have been unraveled to be deregulated in various diseases including RA. Several lines of evidence are emerging that ncRNA may contribute to the pathogenesis, disease progression and treatment of RA. For example, SNP rs2850711 within lnc00305 was indicated to associate with RA development susceptibility, whereas a higher level of miR-10a represented a good response to methotrexate (MTX) treatment in RA patients. In the aspect of refractory RA, ncRNA also plays an important role by affecting or regulating drug sensitivity in RA patients. Of note, lower expression of miR-20a in rheumatoid arthritis synovial fibroblast (RASFs) was demonstrated to activate the Janus Kinase (JAK)- signal transducer and activator of transcription 3(STAT3)-mediated inflammation, thereby promoting cell proliferation and apoptosis-resistant. In this review, we have illustrated the changes of ncRNAs and their underlying mechanisms in the whole developing period of RA pathogenesis and disease progression, as well as highlighted the novel therapeutic targets/strategies and bio-markers for RA therapy.


Assuntos
Antirreumáticos , Artrite Reumatoide , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/uso terapêutico , MicroRNAs/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Antirreumáticos/uso terapêutico , RNA não Traduzido/uso terapêutico , Progressão da Doença
3.
Pharmacol Ther ; 208: 107480, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31972182

RESUMO

Chronic inflammation of the central nervous system (CNS) is critical to the pathogenesis of neuropsychiatric disorders (NPDs) that affect the global population. Current therapeutics for NPDs are limited to relieving symptoms and induce many adverse effects. Therefore, the discovery of novel therapeutic agents from natural sources is urgently needed. Intriguingly, the immune responses of peripheral organs are closely linked through the molecular communication between resident and blood-borne cellular components, which shape the neuroinflammatory phenotypes of NPDs. Since the gut and spleen are the two largest immunological organs of the body, the brain-gut-microbiome and brain-spleen axes have been implicated in the connection between the CNS and the peripheral immune system. Accordingly, it has been proposed that the local CNS inflammation observed in NPDs is regulated via the manipulation of the systemic immune system by targeting the gut and spleen. Additionally, the complexity of the signalling network underlying the communication between the CNS and the systemic immune system suggests a strong potential for treating NPDs through a polypharmacological approach. The close association between systemic immunity and the homeostasis of the CNS points to the concept of repurposing interventions for systemic immune disorders to treat NPDs. Notably, natural products represent a promising source of such effective compounds due to both their pharmacological potency and safety. This review discusses the complex implications of dysregulated systemic immunity mediated by the brain-spleen and brain-gut-microbiome axes in NPDs, such as Alzheimer's disease, Parkinson's disease, schizophrenia and major depressive disorder. In addition, the potential of repurposing natural product-based bioactive compounds for treating NPDs via modulating systemic immune disorders is intensively discussed.


Assuntos
Produtos Biológicos/uso terapêutico , Fatores Imunológicos/uso terapêutico , Transtornos Mentais/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Animais , Humanos , Sistema Imunitário/efeitos dos fármacos , Inflamação/tratamento farmacológico , Transtornos Mentais/imunologia , Polifarmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...