Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Cancer Lett ; 597: 217023, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38852701

RESUMO

HER2-positive and triple-negative breast cancers (TNBC) are difficult to treat and associated with poor prognosis. Despite showing initial response, HER2-positive breast cancers often acquire resistance to HER2-targeted therapies, and TNBC lack effective therapies. To overcome these clinical challenges, we evaluated the therapeutic utility of co-targeting TrkA and JAK2/STAT3 pathways in these breast cancer subtypes. Here, we report the novel combination of FDA-approved TrkA inhibitors (Entrectinib or Larotrectinib) and JAK2 inhibitors (Pacritinib or Ruxolitinib) synergistically inhibited in vitro growth of HER2-positive breast cancer cells and TNBC cells. The Entrectinib-Pacritinib combination inhibited the breast cancer stem cell subpopulation, reduced expression of stemness genes, SOX2 and MYC, and induced apoptosis. The Entrectinib-Pacritinib combination suppressed orthotopic growth of HER2-positive Trastuzumab-refractory breast cancer xenografts and basal patient-derived xenograft (PDXs), reduced tumoral SOX2 and MYC, and induced apoptosis in both mouse models. The Entrectinib-Pacritinib combination inhibited overall metastatic burden, and brain and bone metastases of intracardially inoculated TNBC cells without toxicity. Together, our results demonstrate for the first time that co-inhibition of TrkA and JAK2 synergistically suppresses breast cancer growth and metastasis, thereby providing preclinical evidence that supports future clinical evaluations.

4.
Front Oncol ; 13: 1214126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023147

RESUMO

Background: Clinical biomarkers for brain metastases remain elusive. Increased availability of genomic profiling has brought discovery of these biomarkers to the forefront of research interests. Method: In this single institution retrospective series, 130 patients presenting with brain metastasis secondary to Non-Small Cell Lung Cancer (NSCLC) underwent comprehensive genomic profiling conducted using next generation circulating tumor deoxyribonucleic acid (DNA) (Guardant Health, Redwood City, CA). A total of 77 genetic mutation identified and correlated with nine clinical outcomes using appropriate statistical tests (general linear models, Mantel-Haenzel Chi Square test, and Cox proportional hazard regression models). For each outcome, a genetic signature composite score was created by summing the total genes wherein genes predictive of a clinically unfavorable outcome assigned a positive score, and genes with favorable clinical outcome assigned negative score. Results: Seventy-two genes appeared in at least one gene signature including: 14 genes had only unfavorable associations, 36 genes had only favorable associations, and 22 genes had mixed effects. Statistically significant associated signatures were found for the clinical endpoints of brain metastasis velocity, time to distant brain failure, lowest radiosurgery dose, extent of extracranial metastatic disease, concurrent diagnosis of brain metastasis and NSCLC, number of brain metastases at diagnosis as well as distant brain failure. Some genes were solely associated with multiple favorable or unfavorable outcomes. Conclusion: Genetic signatures were derived that showed strong associations with different clinical outcomes in NSCLC brain metastases patients. While these data remain to be validated, they may have prognostic and/or therapeutic impact in the future. Statement of translation relevance: Using Liquid biopsy in NSCLC brain metastases patients, the genetic signatures identified in this series are associated with multiple clinical outcomes particularly these ones that lead to early or more numerous metastases. These findings can be reverse-translated in laboratory studies to determine if they are part of the genetic pathway leading to brain metastasis formation.

5.
bioRxiv ; 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37546807

RESUMO

The presence of cell surface protein CD47 allows cancer cells to evade innate and adaptive immune surveillance resulting in metastatic spread. CD47 binds to and activates SIRPα on the surface of myeloid cells, inhibiting their phagocytic activity. On the other hand, CD47 binds the matricellular protein Thrombospondin-1, limiting T-cell activation. Thus, blocking CD47 is a potential therapeutic strategy for preventing brain metastasis. To test this hypothesis, breast cancer patient biopsies were stained with antibodies against CD47 to determine differences in protein expression. An anti-CD47 antibody was used in a syngeneic orthotopic triple-negative breast cancer model, and CD47 null mice were used in a breast cancer brain metastasis model by intracardiac injection of the E0771-Br-Luc cell line. Immunohistochemical staining of patient biopsies revealed an 89% increase in CD47 expression in metastatic brain tumors compared to normal adjacent tissue (p ≤ 0.05). Anti-CD47 treatment in mice bearing brain metastatic 4T1br3 orthotopic tumors reduced tumor volume and tumor weight by over 50% compared to control mice (p ≤ 0.05) and increased IBA1 macrophage/microglia marker 5-fold in tumors compared to control (p ≤ 0.05). Additionally, CD47 blockade increased the M1/M2 macrophage ratio in tumors 2.5-fold (p ≤ 0.05). CD47 null mice had an 89% decrease in metastatic brain burden (p ≤ 0.05) compared to control mice in a brain metastasis model. Additionally, RNA sequencing revealed several uniquely expressed genes and significantly enriched genes related to tissue development, cell death, and cell migration tumors treated with anti-CD47 antibodies. Thus, demonstrating that CD47 blockade affects cancer cell and tumor microenvironment signaling to limit metastatic spread and may be an effective therapeutic for triple-negative breast cancer brain metastasis.

6.
Commun Biol ; 6(1): 760, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479733

RESUMO

Brain metastases is the most common intracranial tumor and account for approximately 20% of all systematic cancer cases. It is a leading cause of death in advanced-stage cancer, resulting in a five-year overall survival rate below 10%. Therefore, there is a critical need to identify effective biomarkers that can support frequent surveillance and promote efficient drug guidance in brain metastasis. Recently, the remarkable breakthroughs in single-cell RNA-sequencing (scRNA-seq) technology have advanced our insights into the tumor microenvironment (TME) at single-cell resolution, which offers the potential to unravel the metastasis-related cellular crosstalk and provides the potential for improving therapeutic effects mediated by multifaceted cellular interactions within TME. In this study, we have applied scRNA-seq and profiled 10,896 cells collected from five brain tumor tissue samples originating from breast and lung cancers. Our analysis reveals the presence of various intratumoral components, including tumor cells, fibroblasts, myeloid cells, stromal cells expressing neural stem cell markers, as well as minor populations of oligodendrocytes and T cells. Interestingly, distinct cellular compositions are observed across different samples, indicating the influence of diverse cellular interactions on the infiltration patterns within the TME. Importantly, we identify tumor-associated fibroblasts in both our in-house dataset and external scRNA-seq datasets. These fibroblasts exhibit high expression of type I collagen genes, dominate cell-cell interactions within the TME via the type I collagen signaling axis, and facilitate the remodeling of the TME to a collagen-I-rich extracellular matrix similar to the original TME at primary sites. Additionally, we observe M1 activation in native microglial cells and infiltrated macrophages, which may contribute to a proinflammatory TME and the upregulation of collagen type I expression in fibroblasts. Furthermore, tumor cell-specific receptors exhibit a significant association with patient survival in both brain metastasis and native glioblastoma cases. Taken together, our comprehensive analyses identify type I collagen-secreting tumor-associated fibroblasts as key mediators in metastatic brain tumors and uncover tumor receptors that are potentially associated with patient survival. These discoveries provide potential biomarkers for effective therapeutic targets and intervention strategies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Colágeno Tipo I , Encéfalo , Fibroblastos , Microambiente Tumoral
7.
Cancers (Basel) ; 15(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37173921

RESUMO

Tumor Suppressor Candidate 2 (TUSC2) was first discovered as a potential tumor suppressor gene residing in the frequently deleted 3p21.3 chromosomal region. Since its discovery, TUSC2 has been found to play vital roles in normal immune function, and TUSC2 loss is associated with the development of autoimmune diseases as well as impaired responses within the innate immune system. TUSC2 also plays a vital role in regulating normal cellular mitochondrial calcium movement and homeostasis. Moreover, TUSC2 serves as an important factor in premature aging. In addition to TUSC2's normal cellular functions, TUSC2 has been studied as a tumor suppressor gene that is frequently deleted or lost in a multitude of cancers, including glioma, sarcoma, and cancers of the lung, breast, ovaries, and thyroid. TUSC2 is frequently lost in cancer due to somatic deletion within the 3p21.3 region, transcriptional inactivation via TUSC2 promoter methylation, post-transcriptional regulation via microRNAs, and post-translational regulation via polyubiquitination and proteasomal degradation. Additionally, restoration of TUSC2 expression promotes tumor suppression, eventuating in decreased cell proliferation, stemness, and tumor growth, as well as increased apoptosis. Consequently, TUSC2 gene therapy has been tested in patients with non-small cell lung cancer. This review will focus on the current understanding of TUSC2 functions in both normal and cancerous tissues, mechanisms of TUSC2 loss, TUSC2 cancer therapeutics, open questions, and future directions.

8.
Front Oncol ; 13: 1179214, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020873
9.
Neurooncol Pract ; 10(2): 195-202, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36970170

RESUMO

Background: Improvements in therapies have led to an increasing number of long-term survivors of brain metastases. The present series compares a population of 5-year survivors of brain metastases to a generalized brain metastases population to assess for factors attributable to long-term survival. Methods: A single institution retrospective review was performed to identify 5-year survivors of brain metastases who received stereotactic radiosurgery (SRS). A historical control population of 737 patients with brain metastases was used to assess similarities and differences between the long-term survivor population and the general population treated with SRS. Results: A total of 98 patients with brain metastases were found to have survived over 60 months. No differences between long-term survivors and controls were identified with regards to the age at first SRS (P = .19), primary cancer distribution (P = .80), and the number of metastases at first SRS (P = .90). Cumulative incidence of neurologic death at 6, 8 and 10 years for the long-term survivor cohort was 4.8%, 16%, and 16% respectively. In the historical controls, cumulative incidence of neurologic death reached a plateau at 40% after 4.9 years. A significant difference in the distribution of burden of disease at the time of the first SRS was found between the 5-year survivors and the control (P = .0049). 58% of 5-year survivors showed no evidence of clinical disease at the last follow-up. Conclusion: Five-year survivors of brain metastases represent a diverse histologic population, suggesting a small population of oligometastatic and indolent cancers exist for each cancer type.

10.
J Neurooncol ; 160(3): 643-648, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36335526

RESUMO

PURPOSE: Life expectancy continues to increase for patients with brain metastases treated with stereotactic radiosurgery (SRS). The present study sought to retrospectively analyze brain metastasis patients who have survived 2 years or more, and assess for what factors may predict for a final brain metastasis velocity (BMV) of zero. METHODS: This was a single-institution retrospective study of 300 patients treated with SRS from 2001 to 2019 for brain metastases who survived greater than 2 years after first SRS. Final BMV is calculated by summing all metastases through the observed time divided by the total time in years. A BMV of zero is defined as at least 2 years of imaging follow-up without distant brain failure (DBF). RESULTS: Median age at first SRS is 61 (IQR: 53, 70). Kaplan-Meier estimated median overall survival is 4.9 years and time to DBF is 1.5 years (95% CI 1.2, 2.0). Twenty-eight (9.3%) patients underwent subsequent WBRT. One hundred and one (33.7%) patients never had any further brain metastases (BMV = 0) at a median follow-up time of 3.3 years. Median BMV is 0.4 (IQR: 0, 1.4). Distant brain failures reach a plateau at 4 years where the cumulative incidence of DBF is 82%. 70% of first time DBFs have occurred by 2 years. Factors significantly associated with a BMV of zero include fewer brain metastases at first SRS (HR 1.1; p = 0.0004) and Caucasian race (HR 1.5; p = 0.03). CONCLUSION: Approximately one third of brain metastasis patients who live beyond 2 years after initial SRS have a BMV of zero. DBFs appear to reach a plateau at 4 years. Factors significantly associated with a BMV of zero include Caucasian race and having had a single brain metastasis at first SRS.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Humanos , Radiocirurgia/métodos , Estudos Retrospectivos , Encéfalo , Sobreviventes
11.
Genes (Basel) ; 13(11)2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36360302

RESUMO

Human epidermal growth factor receptor 2 (HER2) receptor tyrosine kinase is overexpressed in 20-30% of breast cancers and is associated with poor prognosis and worse overall patient survival. Most women with HER2-positive breast cancer receive neoadjuvant chemotherapy plus HER2-targeted therapies. The development of HER2-directed therapeutics is an important advancement in targeting invasive breast cancer. Despite the efficacy of anti-HER2 monoclonal antibodies, they are still being combined with adjuvant chemotherapy to improve overall patient outcomes. Recently, significant progress has been made towards the development of a class of therapeutics known as antibody-drug conjugates (ADCs), which leverage the high specificity of HER2-targeted monoclonal antibodies with the potent cytotoxic effects of various small molecules, such as tubulin inhibitors and topoisomerase inhibitors. To date, two HER2-targeting ADCs have been approved by the FDA for the treatment of HER2-positive breast cancer: Ado-trastuzumab emtansine (T-DM1; Kadcyla®) and fam-trastuzumab deruxtecan-nxki (T-Dxd; Enhertu®). Kadcyla and Enhertu are approved for use as a second-line treatment after trastuzumab-taxane-based therapy in patients with HER2-positive breast cancer. The success of ADCs in the treatment of HER2-positive breast cancer provides novel therapeutic advancements in the management of the disease. In this review, we discuss the basic biology of HER2, its downstream signaling pathways, currently available anti-HER2 therapeutic modalities and their mechanisms of action, and the latest clinical and safety characteristics of ADCs used for the treatment of HER2-positive breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Imunoconjugados , Maitansina , Humanos , Feminino , Ado-Trastuzumab Emtansina/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Maitansina/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Imunoconjugados/uso terapêutico , Imunoconjugados/farmacologia , Antineoplásicos/uso terapêutico , Anticorpos Monoclonais
12.
J Radiosurg SBRT ; 8(2): 77-83, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275134

RESUMO

Background: While immunotherapy has been shown to improve survival and decrease neurologic death in patients with brain metastases, it remains unclear whether this improvement is due to prevention of new metastasis to the brain. Method: We performed a retrospective review of patients presenting with brain metastases simultaneously with the first diagnosis of metastatic disease and were treated with upfront immunotherapy as part of their treatment regimen and stereotactic radiosurgery (SRS) to the brain metastases. We compared this cohort with a historical control population (prior to the immunotherapy era) who were treated with pre-immunotherapy standard of care systemic therapy and with SRS to the brain metastases. Results: Median overall survival time was improved in the patients receiving upfront immunotherapy compared to the historical cohort (48 months vs 8.4 months, p=0.001). Median time to distant brain failure was statistically equivalent (p=0.3) between the upfront immunotherapy cohort and historical control cohort (10.3 vs 12.6 months). Brain metastasis velocity was lower in the upfront immunotherapy cohort (median 3.72 metastases per year) than in the historical controls (median 9.48 metastases per year, p=0.001). Cumulative incidence of neurologic death at one year was 12% in the upfront immunotherapy cohort and 28% in the historical control cohort (p=0.1). Conclusions: Upfront immunotherapy appears to improve overall survival and decrease BMV compared to historical controls. While these data remain to be validated, they suggest that brain metastasis patients may benefit from concurrent immunotherapy with SRS.

13.
Cancers (Basel) ; 14(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077791

RESUMO

The goal of this study is to identify pharmacological inhibitors that target a recently identified novel mediator of breast cancer brain metastasis (BCBM), truncated glioma-associated oncogene homolog 1 (tGLI1). Inhibitors of tGLI1 are not yet available. To identify compounds that selectively kill tGLI1-expressing breast cancer, we screened 1527 compounds using two sets of isogenic breast cancer and brain-tropic breast cancer cell lines engineered to stably express the control, GLI1, or tGLI1 vector, and identified the FDA-approved antifungal ketoconazole (KCZ) to selectively target tGLI1-positive breast cancer cells and breast cancer stem cells, but not tGLI1-negative breast cancer and normal cells. KCZ's effects are dependent on tGLI1. Two experimental mouse metastasis studies have demonstrated that systemic KCZ administration prevented the preferential brain metastasis of tGLI1-positive breast cancer and suppressed the progression of established tGLI1-positive BCBM without liver toxicities. We further developed six KCZ derivatives, two of which (KCZ-5 and KCZ-7) retained tGLI1-selectivity in vitro. KCZ-7 exhibited higher blood-brain barrier penetration than KCZ/KCZ-5 and more effectively reduced the BCBM frequency. In contrast, itraconazole, another FDA-approved antifungal, failed to suppress BCBM. The mechanistic studies suggest that KCZ and KCZ-7 inhibit tGLI1's ability to bind to DNA, activate its target stemness genes Nanog and OCT4, and promote tumor proliferation and angiogenesis. Our study establishes the rationale for using KCZ and KCZ-7 for treating and preventing BCBM and identifies their mechanism of action.

14.
Neurooncol Pract ; 9(5): 390-401, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36134018

RESUMO

Background: Re-irradiation for recurrent gliomas is a controversial treatment option with no clear standard dose or concurrent systemic therapy. Methods: This series represents a single-institution retrospective review of patients treated with re-irradiation for recurrent high-grade glioma. After 2012, patients were commonly offered concurrent bevacizumab as a cytoprotective agent against radiation necrosis. Kaplan-Meier method was used to estimate overall survival and progression-free survival. Cox proportional hazards regression was used to identify factors associated with overall survival and progression-free survival. Results: Between 2001 and 2021, 52 patients underwent re-irradiation for a diagnosis of recurrent high-grade glioma. 36 patients (69.2%) had a histologic diagnosis of glioblastoma at the time of re-irradiation. The median BED10 (biological equivalent dose 10 Gy) of re-irradiation was 53.1 Gy. Twenty-one patients (40.4%) received concurrent bevacizumab with re-irradiation. Median survival for the entire cohort and for glioblastoma at the time of recurrence patients was 6.7 months and 6.0 months, respectively. For patients with glioblastoma at the time of recurrence, completing re-irradiation (HR 0.03, P < .001), use of concurrent bevacizumab (HR 0.3, P = .009), and the BED10 (HR 0.9, P = .005) were predictive of overall survival. Nine patients developed grade 3-5 toxicity; of these, 2 received concurrent bevacizumab and 7 did not (P = .15). Conclusion: High dose re-irradiation with concurrent bevacizumab is feasible in patients with recurrent gliomas. Concurrent bevacizumab and increasing radiation dose may improve survival in patients with recurrent glioblastoma.

15.
Front Oncol ; 12: 932353, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35957881

RESUMO

Rearranged during transfection (RET) receptor tyrosine kinase was first identified over thirty years ago as a novel transforming gene. Since its discovery and subsequent pathway characterization, RET alterations have been identified in numerous cancer types and are most prevalent in thyroid carcinomas and non-small cell lung cancer (NSCLC). In other tumor types such as breast cancer and salivary gland carcinomas, RET alterations can be found at lower frequencies. Aberrant RET activity is associated with poor prognosis of thyroid and lung carcinoma patients, and is strongly correlated with increased risk of distant metastases. RET aberrations encompass a variety of genomic or proteomic alterations, most of which confer constitutive activation of RET. Activating RET alterations, such as point mutations or gene fusions, enhance activity of signaling pathways downstream of RET, namely PI3K/AKT, RAS/RAF, MAPK, and PLCγ pathways, to promote cell proliferation, growth, and survival. Given the important role that mutant RET plays in metastatic cancers, significant efforts have been made in developing inhibitors against RET kinase activity. These efforts have led to FDA approval of Selpercatinib and Pralsetinib for NSCLC, as well as, additional selective RET inhibitors in preclinical and clinical testing. This review covers the current biological understanding of RET signaling, the impact of RET hyperactivity on tumor progression in multiple tumor types, and RET inhibitors with promising preclinical and clinical efficacy.

16.
Semin Cancer Biol ; 86(Pt 3): 84-106, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35995341

RESUMO

Breast cancer is the most commonly diagnosed cancer and second-leading cause of cancer deaths in women. Breast cancer stem cells (BCSCs) promote metastasis and therapeutic resistance contributing to tumor relapse. Through activating genes important for BCSCs, transcription factors contribute to breast cancer metastasis and therapeutic resistance, including the signal transducer and activator of transcription (STAT) family of transcription factors. The STAT family consists of six major isoforms, STAT1, STAT2, STAT3, STAT4, STAT5, and STAT6. Canonical STAT signaling is activated by the binding of an extracellular ligand to a cell-surface receptor followed by STAT phosphorylation, leading to STAT nuclear translocation and transactivation of target genes. It is important to note that STAT transcription factors exhibit diverse effects in breast cancer; some are either pro- or anti-tumorigenic while others maintain dual, context-dependent roles. Among the STAT transcription factors, STAT3 is the most widely studied STAT protein in breast cancer for its critical roles in promoting BCSCs, breast cancer cell proliferation, invasion, angiogenesis, metastasis, and immune evasion. Consequently, there have been substantial efforts in developing cancer therapeutics to target breast cancer with dysregulated STAT3 signaling. In this comprehensive review, we will summarize the diverse roles that each STAT family member plays in breast cancer pathobiology, as well as, the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators in the context of breast cancer treatment.


Assuntos
Neoplasias da Mama , Segunda Neoplasia Primária , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Recidiva Local de Neoplasia , Células-Tronco Neoplásicas , Carcinogênese
17.
NPJ Breast Cancer ; 8(1): 84, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853889

RESUMO

There is growing evidence that germline mutations in certain genes influence cancer susceptibility, tumor evolution, as well as clinical outcomes. Identification of a disease-causing genetic variant enables testing and diagnosis of at-risk individuals. For breast cancer, several genes such as BRCA1, BRCA2, PALB2, ATM, and CHEK2 act as high- to moderate-penetrance cancer susceptibility genes. Genotyping of these genes informs genetic risk assessment and counseling, as well as treatment and management decisions in the case of high-penetrance genes. TGFBR1*6A (rs11466445) is a common variant of the TGF-ß receptor type I (TGFBR1) that has a global minor allelic frequency (MAF) of 0.051 according to the 1000 Genomes Project Consortium. It is emerging as a high frequency, low penetrance tumor susceptibility allele associated with increased cancer risk among several cancer types. The TGFBR1*6A allele has been associated with increased breast cancer risk in women, OR 1.15 (95% CI 1.01-1.31). Functionally, TGFBR1*6A promotes breast cancer cell proliferation, migration, and invasion through the regulation of the ERK pathway and Rho-GTP activation. This review discusses current findings on the genetic, functional, and mechanistic associations between TGFBR1*6A and breast cancer risk and proposes future directions as it relates to genetic association studies and mechanisms of action for tumor growth, metastasis, and immune suppression.

18.
Cancer Lett ; 540: 215726, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35589002

RESUMO

Mechanisms underlying breast cancer brain metastasis (BCBM) are still unclear. In this study, we observed that extracellular vesicles (EVs) secreted from breast cancer cells with increased expression of tGLI1, a BCBM-promoting transcription factor, strongly activated astrocytes. EV-derived microRNA/miRNA microarray revealed tGLI1-positive breast cancer cells highly secreted miR-1290 and miR-1246 encapsulated in EVs. Genetic knockin/knockout studies established a direct link between tGLI1 and both miRNAs. Datamining and analysis of patient samples revealed that BCBM patients had more circulating EV-miRs-1290/1246 than those without metastasis. Ectopic expression of miR-1290 or miR-1246 strongly activated astrocytes whereas their inhibitors abrogated the effect. Conditioned media from miR-1290- or miR-1246-overexpressing astrocytes promoted mammospheres. Furthermore, miRs-1290/1246 suppressed expression of FOXA2 transcription repressor, leading to CNTF cytokine secretion and subsequent activation of astrocytes. Finally, we conducted a mouse study to demonstrate that astrocytes overexpressing miR-1290, but not miR-1246, enhanced intracranial colonization and growth of breast cancer cells. Collectively, our findings demonstrate, for the first time, that breast cancer EV-derived miR-1290 and miR-1246 activate astrocytes in the brain metastatic microenvironment and that EV-derived miR-1290 promotes progression of brain metastases through the novel EV-miR-1290→FOXA2→CNTF signaling axis.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Fator Neurotrófico Ciliar , Vesículas Extracelulares , Fator 3-beta Nuclear de Hepatócito , MicroRNAs , Animais , Astrócitos/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Fator Neurotrófico Ciliar/metabolismo , Vesículas Extracelulares/metabolismo , Feminino , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo , Microambiente Tumoral
19.
Front Oncol ; 12: 866014, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371975

RESUMO

Breast cancer is the most commonly diagnosed cancer in women. Metastasis is the primary cause of mortality for breast cancer patients. Multiple mechanisms underlie breast cancer metastatic dissemination, including the interleukin-6 (IL-6)-mediated signaling pathway. IL-6 is a pleiotropic cytokine that plays an important role in multiple physiological processes including cell proliferation, immune surveillance, acute inflammation, metabolism, and bone remodeling. IL-6 binds to the IL-6 receptor (IL-6Rα) which subsequently binds to the glycoprotein 130 (gp130) receptor creating a signal transducing hexameric receptor complex. Janus kinases (JAKs) are recruited and activated; activated JAKs, in turn, phosphorylate signal transducer and activator of transcription 3 (STAT3) for activation, leading to gene regulation. Constitutively active IL-6/JAK/STAT3 signaling drives cancer cell proliferation and invasiveness while suppressing apoptosis, and STAT3 enhances IL-6 signaling to promote a vicious inflammatory loop. Aberrant expression of IL-6 occurs in multiple cancer types and is associated with poor clinical prognosis and metastasis. In breast cancer, the IL-6 pathway is frequently activated, which can promote breast cancer metastasis while simultaneously suppressing the anti-tumor immune response. Given these important roles in human cancers, multiple components of the IL-6 pathway are promising targets for cancer therapeutics and are currently being evaluated preclinically and clinically for breast cancer. This review covers the current biological understanding of the IL-6 signaling pathway and its impact on breast cancer metastasis, as well as, therapeutic interventions that target components of the IL-6 pathway including: IL-6, IL-6Rα, gp130 receptor, JAKs, and STAT3.

20.
Cancer Lett ; 531: 124-135, 2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35167936

RESUMO

Whether tumor suppressor candidate 2 (TUSC2) plays an important role in glioblastoma (GBM) progression is largely unknown. Whether TUSC2 undergoes polyubiquitination is unknown. Herein, we report that TUSC2 protein expression is reduced/lost in GBM compared to normal brain due to protein destabilization; TUSC2 mRNA is equally expressed in both tissues. NEDD4 E3 ubiquitin ligase polyubiquitinates TUSC2 at residue K71, and the TUSC2-K71R mutant is resistant to NEDD4-mediated proteasomal degradation. Analysis of GBM specimens showed NEDD4 protein is highly expressed in GBM and the level is inversely correlated with TUSC2 protein levels. Furthermore, TUSC2 restoration induces apoptosis and inhibits patient-derived glioma stem cells (PD-GSCs) in vitro and in vivo. Conversely, TUSC2-knockout promotes PD-GSCs in vitro and in vivo. RNA-Seq analysis and subsequent validations showed GBM cells with TUSC2-knockout expressed increased Bcl-xL and were more resistant to apoptosis induced by a Bcl-xL-specific BH3 mimetic. A TUSC2-knockout gene signature created from the RNA-seq data predicts poor patient survival. Together, these findings establish that NEDD4-mediated polyubiquitination is a novel mechanism for TUSC2 degradation in GBM and that TUSC2 loss promotes GBM progression in part through Bcl-xL upregulation.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Genes Supressores de Tumor , Glioblastoma/patologia , Glioma/genética , Humanos , Proteínas Supressoras de Tumor/genética , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...