Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 671: 434-440, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38815378

RESUMO

Photoelectrochemical (PEC) water splitting is an effective and sustainable method for solar energy harvesting. However, the technology is still far away from practical application because of the high cost and low efficiency. Here, we report a low-cost, stable and high-performing industrial-Si-based photoanode (n-Indus-Si/Co-2mA-xs) that is fabricated by simple electrodeposition. Systematic characterizations such as scanning electron microscopy, X-ray photoelectron spectroscopy have been employed to characterize and understand the working mechanisms of this photoanode. The uniform and adherent dispersion of co-catalyst particles result in high built-in electric field, reduced charge transfer resistance, and abundant active sites. The core-shell structure of co-catalyst particles is formed after the activation process. The reconstructed morphology and modified chemical states of the surface co-catalyst particles improve the separation and transfer of charges, and the reaction kinetics for water oxidation greatly. Our work demonstrates that large-scale PEC water splitting can be achieved by engineering the industrial-Si-based photoelectrode, which shall guide the development of solar energy conversion in the industry.

2.
Small ; 20(3): e2304376, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649206

RESUMO

Green hydrogen is considered to be the key for solving the emerging energy and environmental issues. The photoelectrochemical (PEC) process for the production of green hydrogen has been widely investigated because solar power is clean and renewable. However, mass production in this way is still far away from reality. Here, a Si photoanode is reported with CoOx as co-catalyst for efficient water oxidation. It is found that a high photovoltage of 350 mV can be achieved in 1.0 m K3 BO3 . Importantly, the photovoltage can be further increased to 650 mV and the fill factor of 0.62 is obtained in 1.0 m K3 BO3 by incorporating Mo into CoOx . The Mo-incorporated photoanode is also highly stable. It is shown that the incorporation of Mo can reduce the particle size of co-catalyst on the Si surface, improve the particle-distribution uniformity, and increase the density of particles, which can effectively enhance the light absorption and the electrochemical active surface area. Importantly, the Mo-incorporation results in high energy barrier in the heterojunction. All of these factors are attributed to improved the PEC performance. These findings may provide new strategies to maximize the solar-to-fuel efficiency by tuning the co-catalysts on the Si surface.

4.
Chemphyschem ; 24(11): e202200937, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36849705

RESUMO

Carbon neutrality has drawn increasing attention for realizing the carbon cyclization and reducing the greenhouse effect. Although the C1 products, such as CO, can be achieved with a high Faraday efficiency, the targeted production of C2 fuels as well as the mechanism have not been systematically investigated. In this work, we carry out a first-principles study to screen dual-atom catalysts (DACs) for producing C2 fuels through the electrocatalytic carbon monoxide reduction reaction (e-CORR). We find that methanol, ethanol and ethylene can be produced on both DAC-Co and DAC-Cu, while acetate can be achieved on DAC-Cu only. Importantly, methanol and ethylene are preferred on DAC-Co, while acetate and ethylene on DAC-Cu. Furthermore, we show that the explicit solvent can enhance the adsorption and influence the protonation steps, which subsequently affects the protonation and dimerization behavior as well as the performance and selectivity of e-CORR on DACs. We further demonstrate that the C-C coupling is easy to be formed and stabilized if the Integrated Crystal Orbital Hamilton Population (ICOHP) is low because of the low energy barrier. Our findings provide not only guidance on the design of novel catalysts for e-CORR, but an insightful understanding on the reduction mechanism.

5.
Materials (Basel) ; 15(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36143576

RESUMO

In the present study, microstructural evolution and hardness of the friction stir processed (FSPed) SAF 2507 super duplex stainless steel fabricated at a rotational speed of 650 rpm and a traverse speed of 60 mm/min were investigated. A scanning electron microscope (SEM) equipped with an electron backscatter diffraction (EBSD) detector was used to study the microstructure of the stir zone. The grain sizes of austenite and ferrite in the FSPed 2507 were found to be smaller (0.75 and 0.96 µm) than those of the substrate (6.6 and 5.6 µm) attributed to the occurrence of continuous dynamic recrystallization (CDRX) in both phases. Higher degree of grain refinement and DRX were obtained at the advancing side of the FSPed specimens due to higher strain and temperature. A non-uniform hardness distribution was observed along the longitudinal direction of the SZ. The maximum hardness was obtained at the bottom (407 HV1).

6.
Front Big Data ; 5: 787421, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35496379

RESUMO

In this community review report, we discuss applications and techniques for fast machine learning (ML) in science-the concept of integrating powerful ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs.

7.
Small ; 17(43): e2101605, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34310054

RESUMO

Perovskite oxides are studied as electrocatalysts for oxygen evolution reactions (OER) because of their low cost, tunable structure, high stability, and good catalytic activity. However, there are two main challenges for most perovskite oxides to be efficient in OER, namely less active sites and low electrical conductivity, leading to limited catalytic performance. To overcome these intrinsic obstacles, various strategies are developed to enhance their catalytic activities in OER. In this review, the recent developments of these strategies is comprehensively summarized and systematically discussed, including composition engineering, crystal facet control, morphology modulation, defect engineering, and hybridization. Finally, perspectives on the design of perovskite oxide-based electrocatalysts for practical applications in OER are given.

8.
Small ; 17(43): e2101482, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34151516

RESUMO

2D materials have been interesting for applications into nanodevices due to their intriguing physical properties. In this work, four types of unique structures are designed that are composed of MXenes and C/N-Si layers (CNSi), where MXene is sandwiched by the CNSi layers with different thicknesses, for their practical applications into integrated devices. The systematic calculations on their elastic constants, phonon dispersions, and thermodynamic properties show that these structures are stable, depending on the composition of MXene. It is found: 1) different from MXene or N-functionalized MXene (M2 CN2 ), SiN2 /M2 X/SiN2 possess new electronic properties with free carriers only in the middle, leading to 2D free electron gas; 2) CNSi/MXene/CNSi shows an intrinsic Ohmic semiconductor-metal-semiconductor (S-M-S) contact, which is potential for applications into nanodevices; and 3) O/M2 C/SiN2 and N/M2 C/OSiN are also stable and show different electronic properties, which can be semiconductor or metal as a whole depending on the interface. A method is further proposed to fabricate the 2D structures based on the industrial availability. The findings may provide a novel strategy to design and fabricate the 2D structures for their application into nanodevices and integrated circuits.

9.
Nanoscale ; 13(17): 8038-8048, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33900351

RESUMO

Two-dimensional (2D) materials have attracted increasing interest in the past decades due to their unique physical and chemical properties for diverse applications. In this work, we present a first-principles design on a novel 2D family, MSi2CxN4-x (M = Cr, Mo, and W; x = 1 and 2), based on density-functional theory (DFT). We find that all MSi2CxN4-x monolayers are stable by investigating their mechanic, dynamic, and thermodynamic properties. Interestingly, we see that the alignment of magnetic moments can be tuned to achieve non-magnetism (NM), ferromagnetism (FM), anti-ferromagnetism (AFM) or paramagnetism (PM) by arranging the positions of carbon atoms in the 2D systems. Accordingly, their electronic properties can be controlled to obtain semiconductor, half-metal, or metal. The FM states in half-metallic 2D systems are contributed to the hole-mediated double exchange, while the AFM states are induced by super-exchange. Our findings show that the physical properties of 2D systems can be tuned by compositional and structural engineering, especially the layer of C atoms, which may provide guidance on the design and fabrication of novel 2D materials with projected properties for multi-functional applications.

10.
Small ; 17(17): e2007557, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33733600

RESUMO

Hydrogen evolution reaction (HER) is a key step for electrochemical energy conversion and storage. Developing well defined nanostructures as noble-metal-free electrocatalysts for HER is promising for the application of hydrogen technology. Herein, it is reported that 3D porous hierarchical CoNiP/Cox P multi-phase heterostructure on Ni foam via an electrodeposition method followed by phosphorization exhibits ultra-highly catalytic activity for HER. The optimized CoNiP/Cox P multi-phase heterostructure achieves an excellent HER performance with an ultralow overpotential of 36 mV at 10 mA cm-2 , superior to commercial Pt/C. Importantly, the multi-phase heterostructure shows exceptional stability as confirmed by the long-term potential cycles (30,000 cycles) and extended electrocatalysis (up to 500 h) in alkaline solution and natural seawater. Experimental characterizations and DFT calculations demonstrate that the strong electronic interaction at the heterointerface of CoNiP/CoP is achieved via the electron transfer from CoNiP to the heterointerface, which directly promotes the dissociation of water at heterointerface and desorption of hydrogen on CoNiP. These findings may provide deep understanding on the HER mechanism of heterostructure electrocatalysts and guidance on the design of earth-abundant, cost-effective electrocatalysts with superior HER activity for practical applications.

11.
Phys Chem Chem Phys ; 23(4): 3144-3151, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33496290

RESUMO

Very recently, the centimeter-scale MoSi2N4 monolayer was synthesized experimentally and exhibited a semiconducting nature with high mobility (Hong et al., Science, 2020, 369, 670-674). Here, we show that MoSi2N4 and its analogues, MoSi2P4 and MoSi2As4, are potential two-dimensional (2D) materials for valleytronics based on first-principles calculations. We demonstrate that the intrinsic inversion symmetry breaking and strong spin-orbital coupling lead to the remarkable spin-valley coupling in the inequivalent valleys at K and K' points, which result in not only the valley-contrasting transport properties, but also the spin and valley coupled optical selection rules. Moreover, the in-plane strain can tune the bandgaps and spin splitting or even induce an indirect-to-direct bandgap transition for promising application in the strain-tunable valleytronics. We find that the valley polarization can be generated by doping magnetic element. Our findings offer theoretical insight into the exotic physical properties of novel MoSi2N4-family materials beyond transition metal dichalcogenides.

12.
Phys Chem Chem Phys ; 22(31): 17632-17638, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32720955

RESUMO

Searching for two-dimensional (2D) materials with a high phase-transition temperature and magnetic anisotropy is critical to the development of spintronics. Herein, we investigate the electronic and magnetic properties of 2D TiX3 (X = F, Cl, Br and I) monolayers based on density-functional theory (DFT). We show that the 2D TiX3 monolayers are stable dynamically and thermodynamically as evidenced by phonon and molecular dynamics calculations, respectively, and show their semiconducting nature. We find that the TiBr3 and TiI3 monolayers are ferromagnetic with magnetic anisotropy out of plane, which are intrinsic without the need for external intervention. The magnetic anisotropy energies of the TiBr3 and TiI3 monolayers are 0.8 and 2.5 meV per s.f., respectively. The Curie temperatures of TiBr3 and TiI3 are 75 K and 90 K, respectively. We further show that the interlayer magnetic coupling and magnetic anisotropy energies (MAE) of the bilayer TiI3 can be tuned by the interlayer distance. Additionally, a two-step transition in the magnetic state is observed in the bilayer TiI3 with AB' stacking under applied strain in a vertical direction. It is expected that our design may enrich two-dimensional functional materials, which may find versatile applications.

13.
ChemSusChem ; 12(14): 3355-3362, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31074099

RESUMO

The development of earth-abundant, economical, and efficient photocatalysts to boost water splitting is a key challenge for the practical large-scale application of hydrogen energy. In this study, g-C3 N4 loaded with different tungsten compounds (W2 C, WS2 , and W2 N) is found to exhibit enhanced photocatalytic activities. W2 C/g-C3 N4 displays the highest activity for the photocatalytic reaction with a H2 evolution rate of up to 98 µmol h-1 , as well as remarkable recycling stability. The excellent photocatalytic activity of W2 C/g-C4 N3 is attributed to the suitable band alignment in W2 C/g-C4 N3 and high HER activity of the W2 C cocatalyst, which promotes the separation and transfer of carriers and hydrogen evolution at the surface. These findings demonstrate that the tungsten carbide cocatalyst is more active for the photocatalytic reaction than the sulfide or nitride, paving a way for the design of novel and efficient carbides as cocatalysts for photocatalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...