Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
J Vis Exp ; (205)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38557950

RESUMO

Surgical procedures, including nerve reconstruction and end-organ muscle reinnervation, have become more prominent in the prosthetic field over the past decade. Primarily developed to increase the functionality of prosthetic limbs, these surgical procedures have also been found to reduce postamputation neuropathic pain. Today, some of these procedures are performed more frequently for the management and prevention of postamputation pain than for prosthetic fitting, indicating a significant need for effective solutions to postamputation pain. One notable emerging procedure in this context is the Regenerative Peripheral Nerve Interface (RPNI). RPNI surgery involves an operative approach that entails splitting the nerve end longitudinally into its main fascicles and implanting these fascicles within free denervated and devascularized muscle grafts. The RPNI procedure takes a proactive stance in addressing freshly cut nerve endings, facilitating painful neuroma prevention and treatment by enabling the nerve to regenerate and innervate an end organ, i.e., the free muscle graft. Retrospective studies have shown RPNI's effectiveness in alleviating postamputation pain and preventing the formation of painful neuromas. The increasing frequency of utilization of this approach has also given rise to variations in the technique. This article aims to provide a step-by-step description of the RPNI procedure, which will serve as the standardized procedure employed in an international, randomized controlled trial (ClinicalTrials.gov, NCT05009394). In this trial, RPNI is compared to two other surgical procedures for postamputation pain management, specifically, Targeted Muscle Reinnervation (TMR) and neuroma excision coupled with intra-muscular transposition and burying.


Assuntos
Neuralgia , Neuroma , Humanos , Amputação Cirúrgica , Neuroma/cirurgia , Nervos Periféricos/cirurgia , Nervos Periféricos/fisiologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Retrospectivos
2.
J Vis Exp ; (205)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38526122

RESUMO

Over the past decade, the field of prosthetics has witnessed significant progress, particularly in the development of surgical techniques to enhance the functionality of prosthetic limbs. Notably, novel surgical interventions have had an additional positive outcome, as individuals with amputations have reported neuropathic pain relief after undergoing such procedures. Subsequently, surgical techniques have gained increased prominence in the treatment of postamputation pain, including one such surgical advancement - targeted muscle reinnervation (TMR). TMR involves a surgical approach that reroutes severed nerves as a type of nerve transfer to "target" motor nerves and their accompanying motor end plates within nearby muscles. This technique originally aimed to create new myoelectric sites for amplified electromyography (EMG) signals to enhance prosthetic intuitive control. Subsequent work showed that TMR also could prevent the formation of painful neuromas as well as reduce postamputation neuropathic pain (e.g., Residual and Phantom Limb Pain). Indeed, multiple studies have demonstrated TMR's effectiveness in mitigating postamputation pain as well as improving prosthetic functional outcomes. However, technical variations in the procedure have been identified as it is adopted by clinics worldwide. The purpose of this article is to provide a detailed step-by-step description of the TMR procedure, serving as the foundation for an international, randomized controlled trial (ClinicalTrials.gov, NCT05009394), including nine clinics in seven countries. In this trial, TMR and two other surgical techniques for managing postamputation pain will be evaluated.


Assuntos
Neuralgia , Membro Fantasma , Humanos , Amputação Cirúrgica , Músculo Esquelético/inervação , Procedimentos Neurocirúrgicos , Membro Fantasma/cirurgia , Ensaios Clínicos Controlados Aleatórios como Assunto
3.
J Infect Dis ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38064677

RESUMO

Nipah virus (NiV) is a highly pathogenic paramyxovirus. The Syrian hamster model recapitulates key features of human NiV disease and is a critical tool for evaluating antivirals and vaccines. Here we describe longitudinal humoral immune responses in NiV-infected Syrian hamsters. Samples were obtained 1-28 days after infection and analyzed by ELISA, neutralization, and Fc-mediated effector function assays. NiV infection elicited robust antibody responses against the nucleoprotein and attachment glycoprotein. Levels of neutralizing antibodies were modest and only detectable in surviving animals. Fc-mediated effector functions were mostly observed in nucleoprotein-targeting antibodies. Antibody levels and activities positively correlated with challenge dose.

4.
Antiviral Res ; 219: 105718, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37758067

RESUMO

Broad spectrum oral antivirals are urgently needed for the early treatment of many RNA viruses of clinical concern. We previously described the synthesis of 1-O-octadecyl-2-O-benzyl-glycero-3-phospho-RVn (V2043), an orally bioavailable lipid prodrug of remdesivir nucleoside (RVn, GS-441524) with broad spectrum antiviral activity against viruses with pandemic potential. Here we compared the relative activity of V2043 with new RVn lipid prodrugs containing sn-1 alkyl ether or sn-2 glycerol modifications. We found that 3-F-4-MeO-Bn, 3-CN-Bn, and 4-CN-Bn sn-2 glycerol modifications improved antiviral activity compared to V2043 when tested in vitro against clinically important RNA viruses from 5 virus families. These results support the continued development of V2043 and sn-2 glycerol modified RVn lipid prodrugs for the treatment of a broad range of RNA viruses for which there are limited therapies.


Assuntos
Antivirais , Pró-Fármacos , Antivirais/farmacologia , Pró-Fármacos/farmacologia , Nucleosídeos/farmacologia , Glicerol , Lipídeos/farmacologia
5.
Methods Mol Biol ; 2682: 25-31, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37610571

RESUMO

From its discovery in Malaysia in the late 1990s, the spillover of the Nipah virus from its pteropid reservoir into the human population has resulted in sporadic outbreaks of fatal encephalitis and respiratory disease. In this chapter, we revise a previously described quantitative reverse transcription polymerase chain reaction method, which now utilizes degenerate nucleotides at certain positions in the probe and the reverse primer to accommodate the sequence heterogeneity observed within the Nipah henipavirus species.


Assuntos
Encefalite , Infecções por Henipavirus , Humanos , Infecções por Henipavirus/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Surtos de Doenças , Nucleotídeos
6.
Methods Mol Biol ; 2682: 87-92, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37610575

RESUMO

Spillovers of Nipah virus (NiV) from its pteropid bat reservoir into the human population continue to cause near-annual outbreaks of fatal encephalitis and respiratory disease in Bangladesh and India since its emergence in Malaysia over 20 years ago. The current lack of effective antiviral therapeutics against NiV merits further testing of compound libraries against NiV using rapid quantitative antiviral assays. The development of recombinant henipaviruses expressing reporter fluorescence and/or luminescence proteins has facilitated the screening of such libraries. In this chapter, we provide a basic protocol for both types of reporter viruses. Utilizing these live NiV-based reporter assays requires modest instrumentation and sidesteps the labor-intensive steps associated with traditional cytopathic effect or viral antigen-based assays.


Assuntos
Henipavirus , Humanos , Antivirais/farmacologia , Bioensaio , Efeito Citopatogênico Viral , Surtos de Doenças
7.
Sci Adv ; 9(31): eadh4057, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37540755

RESUMO

Nipah virus (NiV) causes a highly lethal disease in humans who present with acute respiratory or neurological signs. No vaccines against NiV have been approved to date. Here, we report on the clinical impact of a novel NiV-derived nonspreading replicon particle lacking the fusion (F) protein gene (NiVΔF) as a vaccine in three small animal models of disease. A broad antibody response was detected that included immunoglobulin G (IgG) and IgA subtypes with demonstrable Fc-mediated effector function targeting multiple viral antigens. Single-dose intranasal vaccination up to 3 days before challenge prevented clinical signs and reduced virus levels in hamsters and immunocompromised mice; decreases were seen in tissues and mucosal secretions, critically decreasing potential for virus transmission. This virus replicon particle system provides a vital tool to the field and demonstrates utility as a highly efficacious and safe vaccine candidate that can be administered parenterally or mucosally to protect against lethal Nipah disease.


Assuntos
Infecções por Henipavirus , Vírus Nipah , Vacinas Virais , Cricetinae , Humanos , Animais , Camundongos , Infecções por Henipavirus/prevenção & controle , Infecções por Henipavirus/genética , Vacinação , Modelos Animais de Doenças , Vírus Nipah/genética , Replicon
8.
Virology ; 587: 109858, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37544045

RESUMO

Nipah virus (NiV) is a highly pathogenic paramyxovirus with a high case fatality rate. Due to its high pathogenicity, pandemic potential, and lack of therapeutics or approved vaccines, its study requires biosafety level 4 (BSL4) containment. In this report, we developed a novel neutralization assay for use in biosafety level 2 laboratories. The assay uses a recombinant vesicular stomatitis virus expressing NiV glycoprotein and a fluorescent protein. The recombinant virus propagates as a replication-competent virus in a cell line constitutively expressing NiV fusion protein, but it is restricted to a single round of replication in wild-type cells. We used this system to evaluate the neutralization activity of monoclonal and polyclonal antibodies, plasma from NiV-infected hamsters, and serum from human patients. Therefore, this recombinant virus could be used as a surrogate for using pathogenic NiV and may constitute a powerful tool to develop therapeutics in low containment laboratories.

9.
Sci Rep ; 13(1): 11384, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452062

RESUMO

Nipah virus (NiV), an emerging zoonotic pathogen in Southeast Asia, is transmitted from Pteropus species of fruit bats to a wide range of species, including humans, pigs, horses, dogs, and cats. NiV has killed millions of animals and caused highly fatal human outbreaks since no vaccine is commercially available. This study characterized the immunogenicity and safety of poxvirus-based Nipah vaccines that can be used in humans and species responsible for NiV transmission. Mice were vaccinated with modified vaccinia Ankara (MVA) and raccoon pox (RCN) viral vectors expressing the NiV fusion (F) and glycoprotein (G) proteins subcutaneously (SC) and intranasally (IN). Importantly, both vaccines did not induce significant weight loss or clinical signs of disease while generating high circulating neutralizing antibodies and lung-specific IgG and IgA responses. The MVA vaccine saw high phenotypic expression of effector and tissue resident memory CD8ɑ+ T cells in lungs and splenocytes along with the expression of central memory CD8ɑ+ T cells in lungs. The RCN vaccine generated effector memory (SC) and tissue resident (IN) CD8ɑ+ T cells in splenocytes and tissue resident (IN) CD8ɑ+ T cells in lung cells. These findings support MVA-FG and RCN-FG viral vectors as promising vaccine candidates to protect humans, domestic animals, and wildlife from fatal disease outcomes and to reduce the global threat of NiV.


Assuntos
Vírus Nipah , Poxviridae , Vacinas Virais , Animais , Humanos , Gatos , Camundongos , Cães , Suínos , Cavalos , Vaccinia virus/genética , Vetores Genéticos/genética , Anticorpos Antivirais
10.
Antiviral Res ; 216: 105658, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356729

RESUMO

Remdesivir is a nucleotide prodrug with preclinical efficacy against lethal Nipah virus infection in African green monkeys when administered 1 day post inoculation (dpi) (Lo et al., 2019). Here, we determined whether remdesivir treatment was still effective when treatment administration initiation was delayed until 3 dpi. Three groups of six African green monkeys were inoculated with a lethal dose of Nipah virus, genotype Bangladesh. On 3 dpi, one group received a loading dose of 10 mg/kg remdesivir followed by daily dosing with 5 mg/kg for 11 days, one group received 10 mg/kg on 12 consecutive days, and the remaining group received an equivalent volume of vehicle solution. Remdesivir treatment initiation on 3 dpi provided partial protection from severe Nipah virus disease that was dose dependent, with 67% of animals in the high dose group surviving the challenge. However, remdesivir treatment did not prevent clinical disease, and surviving animals showed histologic lesions in the brain. Thus, early administration seems critical for effective remdesivir treatment during Nipah virus infection.


Assuntos
Infecções por Henipavirus , Vírus Nipah , Animais , Chlorocebus aethiops , Infecções por Henipavirus/tratamento farmacológico , Infecções por Henipavirus/prevenção & controle , Encéfalo , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/farmacologia , Alanina/uso terapêutico
11.
J Clin Med ; 12(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36983424

RESUMO

The increasing popularity of tattooing has paralleled an increase in associated cutaneous reactions. Red ink is notorious for eliciting cutaneous reactions. A common reaction is pseudoepitheliomatous hyperplasia (PEH), which is a benign condition closely simulating squamous cell carcinoma (SCC). Differentiating PEH from SCC is challenging for pathologists and clinicians alike. The exact pathogenesis of these lesions secondary to red ink is not known, and there are no sources outlining diagnostic and treatment options and their efficacy. We present four study cases with different pathologies associated to red ink tattoos including lichenoid reaction, granulomatous reaction, PEH, and an SCC. Additionally, an extensive review of 63 articles was performed to investigate pathogenesis, diagnostic approaches, and treatment options. Hypotheses surrounding pathogenesis include but are not limited to the carcinogenic components of pigments, their reaction with UV and the traumatic process of tattooing. Pathogenesis seems to be multifactorial. Full-thickness biopsies with follow-up is the recommended diagnostic approach. There is no evidence of a single universally successful treatment for PEH. Low-dose steroids are usually tried following a step up in lack of clinical response. For SCC lesions, full surgical excision is widely used. A focus on clinicians' awareness of adverse reactions is key for prevention. Regulation of the unmonitored tattoo industry remains an ongoing problem.

12.
Antivir Chem Chemother ; 30: 20402066221130853, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36305015

RESUMO

As a result of the multiple gathering and travels restrictions during the SARS-CoV-2 pandemic, the annual meeting of the International Society for Antiviral Research (ISAR), the International Conference on Antiviral Research (ICAR), could not be held in person in 2021. Nonetheless, ISAR successfully organized a remote conference, retaining the most critical aspects of all ICARs, a collegiate gathering of researchers in academia, industry, government and non-governmental institutions working to develop, identify, and evaluate effective antiviral therapy for the benefit of all human beings. This article highlights the 2021 remote meeting, which presented the advances and objectives of antiviral and vaccine discovery, research, and development. The meeting resulted in a dynamic and effective exchange of ideas and information, positively impacting the prompt progress towards new and effective prophylaxis and therapeutics.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , SARS-CoV-2 , Pandemias
13.
mBio ; 13(2): e0329421, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35297677

RESUMO

Defective interfering particles (DIs) contain a considerably smaller genome than the parental virus but retain replication competency. As DIs can directly or indirectly alter propagation kinetics of the parental virus, they offer a novel approach to antiviral therapy, capitalizing on knowledge from natural infection. However, efforts to translate in vitro inhibition to in vivo screening models remain limited. We investigated the efficacy of virus-like particles containing DI genomes (therapeutic infectious particles [TIPs]) in the Syrian hamster model of lethal Nipah virus (NiV) disease. We found that coadministering a high dose of TIPs intraperitoneally with virus challenge improved clinical course and reduced lethality. To mimic natural exposure, we also evaluated lower-dose TIP delivery and virus challenge intranasally, finding equally efficacious reduction in disease severity and overall lethality. Eliminating TIP replicative capacity decreased efficacy, suggesting protection via direct inhibition. These data provide evidence that TIP-mediated treatment can confer protection against disease and lethal outcome in a robust animal NiV model, supporting further development of TIP treatment for NiV and other high-consequence pathogens. IMPORTANCE Here, we demonstrate that treatment with defective interfering particles (DIs), a natural by-product of viral infection, can significantly improve the clinical course and outcome of viral disease. When present with their parental virus, DIs can directly or indirectly alter viral propagation kinetics and exert potent inhibitory properties in cell culture. We evaluated the efficacy of a selection of virus-like particles containing DI genomes (TIPs) delivered intranasally in a lethal hamster model of Nipah virus disease. We demonstrate significantly improved clinical outcomes, including reduction in both lethality and the appearance of clinical signs. This work provides key efficacy data in a robust model of Nipah virus disease to support further development of TIP-mediated treatment against high-consequence viral pathogens.


Assuntos
Infecções por Henipavirus , Vírus Nipah , Animais , Cricetinae , Modelos Animais de Doenças , Infecções por Henipavirus/prevenção & controle , Mesocricetus , Vírion
14.
J Early Hear Detect Interv ; 7(3): 6-15, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38617119

RESUMO

The study compares receipt and timeliness of newborn hearing screening and follow-up diagnostic services between the pre-pandemic birth cohort and the pandemic birth cohort in four participating states. Findings from this study will help inform state Early Hearing Detection and Intervention (EHDI) programs in the future should a major public health event occur again.

15.
Microbiol Spectr ; 9(3): e0153721, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34817209

RESUMO

The necessity for intravenous administration of remdesivir confines its utility for treatment of coronavirus disease 2019 (COVID-19) to hospitalized patients. We evaluated the broad-spectrum antiviral activity of ODBG-P-RVn, an orally available, lipid-modified monophosphate prodrug of the remdesivir parent nucleoside (GS-441524), against viruses that cause diseases of human public health concern, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). ODBG-P-RVn showed 20-fold greater antiviral activity than GS-441524 and had activity nearly equivalent to that of remdesivir in primary-like human small airway epithelial cells. Our results warrant in vivo efficacy evaluation of ODBG-P-RVn. IMPORTANCE While remdesivir remains one of the few drugs approved by the FDA to treat coronavirus disease 2019 (COVID-19), its intravenous route of administration limits its use to hospital settings. Optimizing the stability and absorption of remdesivir may lead to a more accessible and clinically potent therapeutic. Here, we describe an orally available lipid-modified version of remdesivir with activity nearly equivalent to that of remdesivir against emerging viruses that cause significant disease, including Ebola and Nipah viruses. Our work highlights the importance of such modifications to optimize drug delivery to relevant and appropriate human tissues that are most affected by such diseases.


Assuntos
Monofosfato de Adenosina/uso terapêutico , Adenosina/uso terapêutico , Alanina/uso terapêutico , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Nucleosídeos/uso terapêutico , Pró-Fármacos/uso terapêutico , Adenosina/análogos & derivados , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Animais , Éteres de Glicerila/uso terapêutico , Humanos , Lipídeos , SARS-CoV-2
16.
J Hazard Mater ; 416: 126069, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492895

RESUMO

Concerns that airborne microplastics (MP) may be detrimental to human health are rising. However, research on the effects of MP on the respiratory system are limited. We tested the effect of MP exposure on both normal and asthmatic pulmonary physiology in mice. We show that MP exposure caused pulmonary inflammatory cell infiltration, bronchoalveolar macrophage aggregation, increased TNF-α level in bronchoalveolar lavage fluid (BALF), and increased plasma IgG1 production in normal mice. MP exposure also affected asthma symptoms by increasing mucus production and inflammatory cell infiltration with notable macrophage aggregation. Further, we found co-labeling of macrophage markers with MP incorporating fluorescence, which indicates phagocytosis of the MP by macrophages. A comparative transcriptomic analysis showed that MP exposure altered clusters of genes related to immune response, cellular stress response, and programmed cell death. A bioinformatics analysis further uncovered the molecular mechanism whereby MP stimulated production of tumor necrosis factor and immunoglobulins to activate a group of transmembrane B-cell antigens, leading to the modulation of cellular stress and programmed cell death in the asthma model. In summary, we show that MP exposure had detrimental effects on the respiratory system in both healthy and asthmatic mice, which calls for urgent discourse and action to mitigate environmental microplastic pollutants.


Assuntos
Asma , Microplásticos , Animais , Asma/induzido quimicamente , Líquido da Lavagem Broncoalveolar , Pulmão , Camundongos , Camundongos Endogâmicos BALB C , Plásticos
17.
Virus Evol ; 7(1): veaa062, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34422315

RESUMO

Despite near-annual human outbreaks of Nipah virus (NiV) disease in Bangladesh, typically due to individual spillover events from the local bat population, only twenty whole-genome NiV sequences exist from humans and ten from bats. NiV whole-genome sequences from annual outbreaks have been challenging to generate, primarily due to the low viral load in human throat swab and serum specimens. Here, we used targeted enrichment with custom NiV-specific probes and generated thirty-five additional unique full-length genomic sequences directly from human specimens and viral isolates. We inferred the temporal and geographic evolutionary history of NiV in Bangladesh and expanded a tool to visualize NiV spatio-temporal spread from a Bayesian continuous diffusion analysis. We observed that strains from Bangladesh segregated into two distinct clades that have intermingled geographically in Bangladesh over time and space. As these clades expanded geographically and temporally, we did not observe evidence for significant branch and site-specific selection, except for a single site in the Henipavirus L polymerase. However, the Bangladesh 1 and 2 clades are differentiated by mutations initially occurring in the polymerase, with additional mutations accumulating in the N, G, F, P, and L genes on external branches. Modeling the historic geographical and temporal spread demonstrates that while widespread, NiV does not exhibit significant genetic variation in Bangladesh. Thus, future public health measures should address whether NiV within in the bat population also exhibits comparable genetic variation, if zoonotic transmission results in a genetic bottleneck and if surveillance techniques are detecting only a subset of NiV.

18.
bioRxiv ; 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34401879

RESUMO

The intravenous administration of remdesivir for COVID-19 confines its utility to hospitalized patients. We evaluated the broad-spectrum antiviral activity of ODBG-P-RVn, an orally available, lipid-modified monophosphate prodrug of the remdesivir parent nucleoside (GS-441524) against viruses that cause diseases of human public health concern, including SARS-CoV-2. ODBG-P-RVn showed 20-fold greater antiviral activity than GS-441524 and had near-equivalent activity to remdesivir in primary-like human small airway epithelial cells. Our results warrant investigation of ODBG-P-RVn efficacy in vivo.

19.
Commun Chem ; 4(1): 129, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36697584

RESUMO

Malaria, caused by parasites of the species Plasmodium, is among the major life-threatening diseases to afflict humanity. The infectious cycle of Plasmodium is very complex involving distinct life stages and transitions characterized by cellular and molecular alterations. Therefore, novel single-cell technologies are warranted to extract details pertinent to Plasmodium-host cell interactions and underpinning biological transformations. Herein, we tested two emerging spectroscopic approaches: (a) Optical Photothermal Infrared spectroscopy and (b) Atomic Force Microscopy combined with infrared spectroscopy in contrast to (c) Fourier Transform InfraRed microspectroscopy, to investigate Plasmodium-infected erythrocytes. Chemical spatial distributions of selected bands and spectra captured using the three modalities for major macromolecules together with advantages and limitations of each method is presented here. These results indicate that O-PTIR and AFM-IR techniques can be explored for extracting sub-micron resolution molecular signatures within heterogeneous and dynamic samples such as Plasmodium-infected human RBCs.

20.
Front Cell Infect Microbiol ; 10: 561502, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33251157

RESUMO

Andes virus (ANDV) and Sin Nombre virus (SNV), highly pathogenic hantaviruses, cause hantavirus pulmonary syndrome in the Americas. Currently no therapeutics are approved for use against these infections. Griffithsin (GRFT) is a high-mannose oligosaccharide-binding lectin currently being evaluated in phase I clinical trials as a topical microbicide for the prevention of human immunodeficiency virus (HIV-1) infection (ClinicalTrials.gov Identifiers: NCT04032717, NCT02875119) and has shown broad-spectrum in vivo activity against other viruses, including severe acute respiratory syndrome coronavirus, hepatitis C virus, Japanese encephalitis virus, and Nipah virus. In this study, we evaluated the in vitro antiviral activity of GRFT and its synthetic trimeric tandemer 3mGRFT against ANDV and SNV. Our results demonstrate that GRFT is a potent inhibitor of ANDV infection. GRFT inhibited entry of pseudo-particles typed with ANDV envelope glycoprotein into host cells, suggesting that it inhibits viral envelope protein function during entry. 3mGRFT is more potent than GRFT against ANDV and SNV infection. Our results warrant the testing of GRFT and 3mGRFT against ANDV infection in animal models.


Assuntos
Antivirais/farmacologia , Síndrome Pulmonar por Hantavirus/virologia , Lectinas/farmacologia , Orthohantavírus/efeitos dos fármacos , Vírus Sin Nombre/efeitos dos fármacos , Técnicas de Cultura de Células , Linhagem Celular , Orthohantavírus/fisiologia , Síndrome Pulmonar por Hantavirus/tratamento farmacológico , Humanos , Vírus Sin Nombre/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...