Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 24(9): 2397-2417, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38623840

RESUMO

Optical techniques, such as optogenetic stimulation and functional fluorescence imaging, have been revolutionary for neuroscience by enabling neural circuit analysis with cell-type specificity. To probe deep brain regions, implantable light sources are crucial. Silicon photonics, commonly used for data communications, shows great promise in creating implantable devices with complex optical systems in a compact form factor compatible with high volume manufacturing practices. This article reviews recent developments of wafer-scale multifunctional nanophotonic neural probes. The probes can be realized on 200 or 300 mm wafers in commercial foundries and integrate light emitters for photostimulation, microelectrodes for electrophysiological recording, and microfluidic channels for chemical delivery and sampling. By integrating active optical devices to the probes, denser emitter arrays, enhanced on-chip biosensing, and increased ease of use may be realized. Silicon photonics technology makes possible highly versatile implantable neural probes that can transform neuroscience experiments.


Assuntos
Encéfalo , Encéfalo/fisiologia , Humanos , Animais , Mapeamento Encefálico/instrumentação , Neurônios/fisiologia , Neurônios/citologia , Silício/química , Nanotecnologia/instrumentação , Optogenética/instrumentação
2.
Nat Commun ; 13(1): 6362, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289213

RESUMO

Visible and near-infrared spectrum photonic integrated circuits are quickly becoming a key technology to address the scaling challenges in quantum information and biosensing. Thus far, integrated photonic platforms in this spectral range have lacked integrated photodetectors. Here, we report silicon nitride-on-silicon waveguide photodetectors that are monolithically integrated in a visible light photonic platform on silicon. Owing to a leaky-wave silicon nitride-on-silicon design, the devices achieved a high external quantum efficiency of >60% across a record wavelength span from λ ~ 400 nm to ~640 nm, an opto-electronic bandwidth up to 9 GHz, and an avalanche gain-bandwidth product up to 173 ± 30 GHz. As an example, a photodetector was integrated with a wavelength-tunable microring in a single chip for on-chip power monitoring.

3.
Neurophotonics ; 8(2): 025003, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33898636

RESUMO

Significance: Light-sheet fluorescence microscopy (LSFM) is a powerful technique for high-speed volumetric functional imaging. However, in typical light-sheet microscopes, the illumination and collection optics impose significant constraints upon the imaging of non-transparent brain tissues. We demonstrate that these constraints can be surmounted using a new class of implantable photonic neural probes. Aim: Mass manufacturable, silicon-based light-sheet photonic neural probes can generate planar patterned illumination at arbitrary depths in brain tissues without any additional micro-optic components. Approach: We develop implantable photonic neural probes that generate light sheets in tissue. The probes were fabricated in a photonics foundry on 200-mm-diameter silicon wafers. The light sheets were characterized in fluorescein and in free space. The probe-enabled imaging approach was tested in fixed, in vitro, and in vivo mouse brain tissues. Imaging tests were also performed using fluorescent beads suspended in agarose. Results: The probes had 5 to 10 addressable sheets and average sheet thicknesses < 16 µ m for propagation distances up to 300 µ m in free space. Imaging areas were as large as ≈ 240 µ m × 490 µ m in brain tissue. Image contrast was enhanced relative to epifluorescence microscopy. Conclusions: The neural probes can lead to new variants of LSFM for deep brain imaging and experiments in freely moving animals.

4.
Opt Express ; 26(23): 30623-30633, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30469956

RESUMO

A polarization-independent grating coupler is proposed and demonstrated in a 3-layer silicon nitride-on-silicon photonic platform. Polarization independent coupling was made possible by the supermodes and added degrees of geometric freedom unique to the 3-layer photonic platform. The grating was designed via optimization algorithms, and the simulated peak coupling efficiency was -2.1 dB with a 1 dB polarization dependent loss (PDL) bandwidth of 69 nm. The fabricated grating couplers had a peak coupling efficiency of -4.8 dB with 1 dB PDL bandwidth of over 100 nm.

5.
Opt Express ; 26(25): 32757, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30645436

RESUMO

We correct two minor errors in the manuscript. The effective diameter of the ring modulator should be 62.5 µm rather than 65 µm. The factor, g, in the FOM for comparing between the O- and C-band results should be 0.83 instead of 0.7.

6.
Opt Express ; 25(25): 30862-30875, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29245766

RESUMO

We present a three-layer silicon nitride on silicon platform for constructing very large photonic integrated circuits. Efficient interlayer transitions are enabled by the close spacing between adjacent layers, while ultra-low-loss crossings are enabled by the large spacing between the topmost and bottommost layers. We demonstrate interlayer taper transitions with losses < 0.15 dB for wavelengths spanning from 1480 nm to 1620 nm. Our overpass waveguide crossings exhibit insertion loss < 2.1 mdB and crosstalk below -56 dB in the wavelength range between 1480 nm and 1620 nm with losses as low as 0.28 mdB. Our platform architecture is suited to meet the demands of large-scale photonic circuits which contain hundreds of crossings.

7.
Opt Express ; 25(7): 8425-8439, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28380954

RESUMO

We demonstrate U-shaped silicon PN junctions for energy efficient Mach-Zehnder modulators and ring modulators in the O-band. This type of junction has an improved modulation efficiency compared to existing PN junction geometries, has low losses, and supports high-speed operation. The U-shaped junctions were fabricated in an 8" silicon photonics platform, and they were incorporated in travelling-wave Mach-Zehnder modulators and microring modulators. For the high-bandwidth Mach-Zehnder modulator, the DC VπL at -0.5 V bias was 4.6 V·mm. It exhibited a 3dB bandwidth of 13 GHz, and eye patterns at up to 24 Gb/s were observed. A VπL as low as ~2.6 V·mm at a -0.5 V bias was measured in another device. The ring modulator tuning efficiency was 40 pm·V-1 between 0 V and -0.5 V bias. It had a 3-dB bandwidth of 13.5 GHz and open eye patterns at up to 13 Gb/s were measured. This type of PN junctions can be easily fabricated without extra masks and can be incorporated into generic silicon photonics platforms.

8.
Opt Express ; 24(11): 11987-93, 2016 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-27410120

RESUMO

We report on the development of Germanium-on-SOI waveguides for mid-infrared wavelengths. The strip waveguides have been formed in 0.85 and 2 µm thick Ge grown on SOI substrate with 220 nm thick Si overlayer. The propagation loss for various waveguide widths has been measured using the Fabry-Perot method with temperature tuning. The minimum loss of ~8 dB/cm has been achieved for 0.85 µm thick Ge core using 3.682 µm laser excitation. The transparency of these waveguides has been measured up to at least 3.82 µm.

9.
Opt Express ; 21(3): 3363-9, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23481796

RESUMO

In this paper a compact and efficient polarization splitter using horizontal slotted waveguides is presented. The splitter is designed by finite-difference-time-domain simulation and realized experimentally. The splitter is built by using a direction coupler consisting of two horizontal slotted waveguides and achieves a high extinction ratio of 14.1 and 16.8 dB for cross and through ports. The optimal coupling length is found to be 15 µm. The device exhibits a good response of extinction ratio across C + L broadband. The splitter obtained is readily used for a polarization diversity circuit, particularly for platforms with horizontal slot waveguides.


Assuntos
Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização
10.
Opt Express ; 21(25): 30350-7, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24514613

RESUMO

The wavelength band near 1300 nm is attractive for many telecommunications applications, yet there are few results in silicon that demonstrate high-speed modulation in this band. We present the first silicon modulator to operate at 50 Gbps near 1300 nm. We demonstrate an open eye at this speed using a differential 1.5 V(pp) signal at 0 V reverse bias, achieving an energy efficiency of 450 fJ/bit.

11.
Opt Express ; 21(25): 31019-28, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24514676

RESUMO

We experimentally demonstrate a polarization splitting grating coupler that is operational near 1310 nm and 1550 nm in a silicon-on-insulator platform, using the same fiber angle for both wavelength bands. At 1550 nm, the device has an insertion loss of 7.1 dB and a 1.5-dB transmission window of 35 nm. At 1310 nm, the insertion loss and 1.5-dB transmission window are 8.2 dB and 18 nm, respectively. Polarization isolation at 1550 nm is 24 dB. This is the first experimental demonstration of a bi-wavelength polarization-splitting grating coupler.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...