Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2400291, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38779741

RESUMO

Triple-negative breast cancer (TNBC) remains a significant challenge in terms of treatment, with limited efficacy of chemotherapy due to side effects and acquired drug resistance. In this study, a threose nucleic acid (TNA)-mediated antisense approach is employed to target therapeutic Akt genes for TNBC therapy. Specifically, two new TNA strands (anti-Akt2 and anti-Akt3) are designed and synthesized that specifically target Akt2 and Akt3 mRNAs. These TNAs exhibit exceptional enzymatic resistance, high specificity, enhance binding affinity with their target RNA molecules, and improve cellular uptake efficiency compared to natural nucleic acids. In both 2D and 3D TNBC cell models, the TNAs effectively inhibit the expression of their target mRNA and protein, surpassing the effects of scrambled TNAs. Moreover, when administered to TNBC-bearing animals in combination with lipid nanoparticles, the targeted anti-Akt TNAs lead to reduced tumor sizes and decreased target protein expression compared to control groups. Silencing the corresponding Akt genes also promotes apoptotic responses in TNBC and suppresses tumor cell proliferation in vivo. This study introduces a novel approach to TNBC therapy utilizing TNA polymers as antisense materials. Compared to conventional miRNA- and siRNA-based treatments, the TNA system holds promise as a cost-effective and scalable platform for TNBC treatment, owing to its remarkable enzymatic resistance, inexpensive synthetic reagents, and simple production procedures. It is anticipated that this TNA-based polymeric system, which targets anti-apoptotic proteins involved in breast tumor development and progression, can represent a significant advancement in the clinical development of effective antisense materials for TNBC, a cancer type that lacks effective targeted therapy.

2.
Bioconjug Chem ; 35(5): 623-632, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659333

RESUMO

Nanodiamonds (NDs) are considered promising delivery platforms, but inaccurate and uncontrolled release of drugs at target sites is the biggest challenge of NDs in precision medicine. This study presents the development of phototriggerable ND-based drug delivery systems, utilizing ortho-nitrobenzyl (o-NB) molecules as photocleavable linkers between drugs and nanocarriers. UV irradiation specifically cleaved o-NB molecules and then was followed by releasing antisense oligonucleotides from ND-based carriers in both buffer and cellular environments. This ND system carried cell nonpermeable therapeutic agents for bypassing lysosomal trapping and degradation. The presence of fluorescent nitrogen-vacancy centers also allowed NDs to serve as biological probes for tracing in cells. We successfully demonstrated phototriggered release of antisense oligonucleotides from ND-based nanocarriers, reactivating their antisense functions. This highlights the potential of NDs, photocleavable linkers, and light stimuli to create advanced drug delivery systems for controlled drug release in disease therapy, opening possibilities for targeted and personalized treatments.


Assuntos
Sistemas de Liberação de Medicamentos , Nanodiamantes , Oligonucleotídeos Antissenso , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/administração & dosagem , Humanos , Nanodiamantes/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Raios Ultravioleta , Luz
3.
Acta Biomater ; 177: 472-485, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38296012

RESUMO

The human genome's nucleotide sequence variation, such as single nucleotide mutations, can cause numerous genetic diseases. However, detecting nucleic acids accurately and rapidly in complex biological samples remains a major challenge. While natural deoxyribonucleic acid (DNA) has been used as biorecognition probes, it has limitations like poor specificity, reproducibility, nuclease-induced enzymatic degradation, and reduced bioactivity on solid surfaces. To address these issues, we introduce a stable and reliable biosensor called graphene oxide (GO)- threose nucleic acid (TNA). It comprises chemically modified TNA capture probes on GO for detecting and imaging target nucleic acids in vitro and in vivo, distinguishing single nucleobase mismatches, and monitoring dynamic changes in target microRNA (miRNA). By loading TNA capture probes onto the GO substrate, the GO-TNA sensing platform for nucleic acid detection demonstrates a significant 88-fold improvement in the detection limit compared to TNA probes alone. This platform offers a straightforward preparation method without the need for costly and labor-intensive isolation procedures or complex chemical reactions, enabling real-time analysis. The stable TNA-based GO sensing nanoplatform holds promise for disease diagnosis, enabling rapid and accurate detection and imaging of various disease-related nucleic acid molecules at the in vivo level. STATEMENT OF SIGNIFICANCE: The study's significance lies in the development of the GO-TNA biosensor, which addresses limitations in nucleic acid detection. By utilizing chemically modified nucleic acid analogues, the biosensor offers improved reliability and specificity, distinguishing single nucleobase mismatches and avoiding false signals. Additionally, its ability to detect and image target nucleic acids in vivo facilitates studying disease mechanisms. The simplified preparation process enhances practicality and accessibility, enabling real-time analysis. The biosensor's potential applications extend beyond healthcare, contributing to environmental analysis and food safety. Overall, this study's findings have substantial implications for disease diagnosis, biomedical research, and diverse applications, advancing nucleic acid detection and its impact on various fields.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Humanos , Ácidos Nucleicos/química , Ácidos Nucleicos/genética , Ácidos Nucleicos/metabolismo , Reprodutibilidade dos Testes , Tetroses/química , Técnicas Biossensoriais/métodos
4.
Biosensors (Basel) ; 13(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37998144

RESUMO

Driven by the convergence of nanotechnology, biotechnology, and materials science, the field of biosensors has witnessed remarkable advancements in recent years [...].


Assuntos
Técnicas Biossensoriais , Nanotecnologia , Biotecnologia
5.
Bioact Mater ; 29: 230-240, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37502677

RESUMO

The neuroinflammatory responses following ischemic stroke cause irreversible nerve cell death. Cell free-double strand DNA (dsDNA) segments from ischemic tissue debris are engulfed by microglia and sensed by their cyclic GMP-AMP synthase (cGAS), which triggers robust activation of the innate immune stimulator of interferon genes (STING) pathway and initiate the chronic inflammatory cascade. The decomposition of immunogenic dsDNA and inhibition of the innate immune STING are synergistic immunologic targets for ameliorating neuroinflammation. To combine the anti-inflammatory strategies of STING inhibition and dsDNA elimination, we constructed a DNase-mimetic artificial enzyme loaded with C-176. Nanoparticles are self-assembled by amphiphilic copolymers (P[CL35-b-(OEGMA20.7-co-NTAMA14.3)]), C-176, and Ce4+ which is coordinated with nitrilotriacetic acid (NTA) group to form corresponding catalytic structures. Our work developed a new nano-drug that balances the cGAS-STING axis to enhance the therapeutic impact of stroke by combining the DNase-memetic Ce4+ enzyme and STING inhibitor synergistically. In conclusion, it is a novel approach to modulating central nervus system (CNS) inflammatory signaling pathways and improving stroke prognosis.

6.
Chem Commun (Camb) ; 59(15): 2039-2055, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36723092

RESUMO

Nanodiamonds (NDs) are a remarkable class of carbon-based nanoparticles in nanomedicine which have recently become a hot topic of research due to their unique features including functionalization versatility, tunable opto-magnetic properties, chemical stability, minimal cytotoxicity, high affinity to biomolecules and biocompatibility. These attractive features make NDs versatile tools for a wide range of biologically relevant applications. In this feature article, we discuss the opto-magnetic properties of negatively charged nitrogen vacancy (NV-) centres in NDs as fluorescence probes. We further discuss the frequently used chemical methods for surface chemistry modification of NDs which are relevant for biomedical applications. The in vitro and in vivo biocompatibility of modified NDs is also highlighted. Subsequently, we give an overview of recent state-of-the-art biomedical applications of NDs as versatile tools for bioimaging and detection, and as targeting nanocarriers for chemotherapy, photodynamic therapy, gene therapy, antimicrobial and antiviral therapy, and bone tissue engineering. Finally, we pinpoint the main challenges for NDs in biomedical applications which lie ahead and discuss perspectives on future directions in advancing the field for practical applications and clinical translations.


Assuntos
Nanodiamantes , Fotoquimioterapia , Nanodiamantes/uso terapêutico , Nanodiamantes/química , Nanomedicina/métodos , Engenharia Tecidual , Corantes Fluorescentes
7.
ACS Appl Mater Interfaces ; 15(1): 1944-1957, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36573551

RESUMO

In this study, we synthesized two phosphoramidites based on 2,7-bis-{4-nitro-8-[3-(2-propyl)-styryl]}-9,9-bis-[1-(3,6-dioxaheptyl)]-fluorene (BNSF) and 4,4'-bis-{8-[4-nitro-3-(2-propyl)-styryl]}-3,3'-di-methoxybiphenyl (BNSMB) structures as visible light-cleavable linkers for oligonucleotide conjugation. In addition to the commercial ultraviolet (UV) photocleavable (PC) linker, the BNSMB linker was further applied as a building component to construct photoregulated DNA devices as duplex structures, which are functionalized with fluorophores and quenchers. Selective cleavage of PC and BNSMB is achieved in response to ultraviolet (UV) and visible light irradiations as two inputs, respectively. This leads to controllable dissociation of pieces of DNA fragments, which is followed by changes of fluorescence emission as signal outputs of the system. By tuning the number and position of the photocleavable molecules, fluorophores, and quenchers, various DNA devices were developed, which mimic the functions of Boolean logic gates and achieve logic operations in AND, OR, NOR, and NAND gates in response to two different wavelengths of light inputs. By sequence design, the photolysis products can be precisely programmed in DNA devices and triggered to release in a selective and/or sequential manner. Thus, this photoregulated DNA device shows potential as a wavelength-dependent drug delivery system for selective control over the release of multiple individual therapeutic oligonucleotide-based drugs. We believe that our work not only enriches the library of photocleavable phosphoramidites available for bioconjugation but also paves the way for developing spatiotemporal-controlled, orthogonal-regulated DNA-based logic devices for a range of applications in materials science, polymers, chemistry, and biology.


Assuntos
DNA , Lógica , DNA/química , Oligonucleotídeos , Corantes Fluorescentes
8.
Mater Today Bio ; 15: 100299, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35637854

RESUMO

Compared with siRNAs or other antisense oligonucleotides (ASOs), the chemical simplicity, DNA/RNA binding capability, folding ability of tertiary structure, and excellent physiological stability of threose nucleic acid (TNA) motivate scientists to explore it as a novel molecular tool in biomedical applications. Although ASOs reach the target cells/tumors, insufficient tissue penetration and distribution of ASOs result in poor therapeutic efficacy. Therefore, the study of the time course of drug absorption, biodistribution, metabolism, and excretion is of significantly importance. In this work, the pharmacokinetics and biosafety of TNAs in living organisms are investigated. We found that synthetic TNAs exhibited excellent biological stability, low cytotoxicity, and substantial uptake in living cells without transfection. Using U87 three-dimensional (3D) multicellular spheroids to mimic the in vivo tumor microenvironment, TNAs showed their ability to penetrate efficiently throughout the whole multicellular spheroid as a function of incubation time and concentration when the size of the spheroid is relatively small. Additionally, TNAs could be safely administrated into Balb/c mice and most of them distributed in the kidneys where they supposed to excrete from the body through the renal filtration system. We found that accumulation of TNAs in kidneys induced no pathological changes, and no acute structural and functional damage in renal systems. The favourable biocompatibility of TNA makes it attractive as a safe and effective nucleic acid-based therapeutic agent for practical biological applications.

9.
Biosensors (Basel) ; 12(2)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35200353

RESUMO

Nucleic acids are emerging as powerful and functional biomaterials due to their molecular recognition ability, programmability, and ease of synthesis and chemical modification. Various types of nucleic acids have been used as gene regulation tools or therapeutic agents for the treatment of human diseases with genetic disorders. Nucleic acids can also be used to develop sensing platforms for detecting ions, small molecules, proteins, and cells. Their performance can be improved through integration with other organic or inorganic nanomaterials. To further enhance their biological properties, various chemically modified nucleic acid analogues can be generated by modifying their phosphodiester backbone, sugar moiety, nucleobase, or combined sites. Alternatively, using nucleic acids as building blocks for self-assembly of highly ordered nanostructures would enhance their biological stability and cellular uptake efficiency. In this review, we will focus on the development and biomedical applications of structural and functional natural nucleic acids, as well as the chemically modified nucleic acid analogues over the past ten years. The recent progress in the development of functional nanomaterials based on self-assembled DNA-based platforms for gene regulation, biosensing, drug delivery, and therapy will also be presented. We will then summarize with a discussion on the advanced development of nucleic acid research, highlight some of the challenges faced and propose suggestions for further improvement.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Ácidos Nucleicos , DNA/química , Sistemas de Liberação de Medicamentos , Humanos , Nanoestruturas/química , Nanotecnologia
10.
Mol Ther Nucleic Acids ; 27: 787-796, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35116190

RESUMO

We successfully fabricated threose nucleic acid (TNA)-based probes for real-time monitoring of target miRNA levels in cells. Our TNA probe is comprised of a fluorophore-labeled TNA reporter strand by partially hybridizing to a quencher-labeled TNA that is designed to be antisense to a target RNA transcript; this results in effective quenching of its fluorescence. In the presence of RNA targets, the antisense capture sequence of the TNA binds to targeted transcripts to form longer, thermodynamic stable duplexes. This binding event displaces the reporter strand from the quencher resulting in a discrete "turning-on" of the fluorescence. Our TNA probe is highly specific and selective toward target miRNA and is able to distinguish one to two base mismatches in the target RNA. Compared with DNA probes, our TNA probes exhibited favorable nuclease stability, thermal stability, and exceptional storage ability for long-term cellular studies. Our TNA probes are efficiently taken up by cells with negligible cytotoxicity for dynamic detection of target miRNAs and can also differentiate the distinct target miRNA expression levels in different cell lines. This work illuminates for using TNA as a building component to construct a biocompatible probe for miRNA detection that offers alternative molecular reagents for miRNA-related diagnostics.

11.
Nanoscale ; 13(31): 13410-13420, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34477746

RESUMO

Photoacoustic imaging (PAI)-guided photothermal therapy (PTT) has drawn considerable attention due to the deeper tissue penetration and higher maximum permissible exposure. However, current phototheranostic agents are greatly restricted by weak absorption in the second near-infrared (NIR-II, 1000-1700 nm) window, long-term toxicity, and poor photostability. In this report, novel organic NIR-II conjugated polymer nanoparticles (CPNs) based on narrow bandgap donor-acceptor BDT-TBZ polymers were developed for effective cancer PAI and PTT. Characterization data confirmed the high photothermal conversion efficiency, good photostability, excellent PAI performance, and superior biocompatibility of as-obtained CPNs. In addition, in vitro and in vivo tests demonstrated the efficient PTT effect of CPNs in ablating cancer cells and inhibiting tumor growth under 1064 nm laser irradiation. More importantly, the CPNs exhibited rapid clearance capability through the biliary pathway and negligible systematic toxicity. Thus, this work provides a novel organic theranostic nanoplatform for NIR-II PAI-guided PTT, which advances the future clinical translation of biocompatible and metabolizable conjugated nanomaterials in cancer diagnosis and therapy.


Assuntos
Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Fototerapia , Polímeros , Medicina de Precisão , Nanomedicina Teranóstica
12.
Nanoscale ; 13(5): 3184-3193, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33527933

RESUMO

Short circulation lifetime, poor blood-brain barrier (BBB) permeability and low targeting specificity limit nanovehicles from crossing the vascular barrier and reaching the tumor site. Consequently, the precise diagnosis of malignant brain tumors remains a great challenge. This study demonstrates the imaging of photostable biopolymer-coated nanodiamonds (NDs) with tumor targeting properties inside the brain. NDs are labeled with PEGylated denatured bovine serum albumin (BSA) and tumor vasculature targeting tripeptides RGD. The modified NDs show high colloidal stability in different buffer systems. Moreover, it is found that discrete dcBSA-PEG-NDs cross the in vitro BBB model more effectively than aggregated NDs. Importantly, compared with the non-targeting NDs, RGD-dcBSA-PEG-NDs can selectively target the tumor site in U-87 MG bearing mice after systemic injection. Overall, this discrete ND system enables efficacious brain tumor visualization with minimal toxicity to other major organs, and is worthy of further investigation into the applications as a unique platform for noninvasive theragnostics and/or thermometry at different stages of human diseases in the brain.


Assuntos
Neoplasias Encefálicas , Nanodiamantes , Animais , Transporte Biológico , Biopolímeros , Barreira Hematoencefálica , Neoplasias Encefálicas/diagnóstico por imagem , Camundongos
13.
ACS Appl Mater Interfaces ; 13(8): 9329-9358, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33155468

RESUMO

Aptamers are exciting smart molecular probes for specific recognition of disease biomarkers. A number of strategies have been developed to convert target-aptamer binding into physically detectable signals. Since the aptamer sequence was first discovered, a large variety of aptamer-based biosensors have been developed, with considerable attention paid to their potential applications in clinical diagnostics. So far, a variety of techniques in combination with a wide range of functional nanomaterials have been used for the design of aptasensors to further improve the sensitivity and detection limit of target determination. In this paper, the advantages of aptamers over traditional antibodies as the molecular recognition components in biosensors for high-throughput screening target molecules are highlighted. Aptamer-target pairing configurations are predominantly single- or dual-site binding; the design of recognition modes of each aptamer-target pairing configuration is described. Furthermore, signal transduction strategies including optical, electrical, mechanical, and mass-sensitive modes are clearly explained together with examples. Finally, we summarize the recent progress in the development of aptamer-based biosensors for clinical diagnosis, including detection of cancer and disease biomarkers and in vivo molecular imaging. We then conclude with a discussion on the advanced development and challenges of aptasensors.


Assuntos
Aptâmeros de Nucleotídeos/química , Biomarcadores/análise , Técnicas Biossensoriais/métodos , Animais , Biomarcadores/química , DNA Catalítico/química , Técnicas e Procedimentos Diagnósticos , Técnicas Eletroquímicas/métodos , Exossomos/química , Humanos , Nanopartículas Metálicas/química , Células Neoplásicas Circulantes/química
15.
ACS Appl Mater Interfaces ; 12(26): 28928-28940, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32432847

RESUMO

The development of biocompatible drug delivery vehicles for cancer therapy in the brain remains a big challenge. In this study, we designed self-assembled DNA nanocages functionalized with or without blood-brain barrier (BBB)-targeting ligands, d and we investigated their penetration across the BBB. Our DNA nanocages were not cytotoxic and they were substantially taken up in brain capillary endothelial cells and Uppsala 87 malignant glioma (U-87 MG) cells. We found that ligand modification is not essential for this DNA system as the ligand-free DNA nanocages (LF-NCs) could still cross the BBB by endocytosis inin vitro and in vivo models. Our spherical DNA nanocages were more permeable across the BBB compared with tubular DNA nanotubes. Remarkably, in vivo studies revealed that DNA nanocages could carry anticancer drugs across the BBB and inhibit the tumor growth in a U-87 MG xenograft mouse model. This is the first example showing the potential of DNA nanocages as innovative delivery vehicles to the brain for cancer therapy. Unlike other delivery systems, our work suggest that a DNA nanocage-based platform provides a safe and cost-effective tool for targeted delivery to the brain and therapy for brain tumors.


Assuntos
Antineoplásicos/uso terapêutico , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Glioma/metabolismo , Animais , Antineoplásicos/química , Barreira Hematoencefálica/efeitos dos fármacos , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Glioblastoma/tratamento farmacológico , Glioma/tratamento farmacológico , Humanos , Camundongos , Nanotubos/química , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Nanoscale ; 12(4): 2464-2471, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31915778

RESUMO

G-quadruplex structures are becoming useful alternative interaction modules for the assembly of DNA nanomaterials because of their unique inducibility by cations. In this study, we demonstrated a new strategy for the assembly of polymeric DNA nanoarchitectures in the presence of cations, such as K+ and Na+, by employing G-quartet toeholds at the edges of discrete mini-square DNA building blocks as adhesive units. In comparison with the Watson-Crick base-paired duplex linkers, G-quadruplex arrays embedded in the self-assembled DNA system exhibit higher thermal stability. The morphology of these doughnut-shaped or spherical-shaped DNA nanostructures is highly regulated by the orientation of the folded G-quadruplexes either in parallel or antiparallel orientation in response to different cations. Furthermore, this G-quadruplex-mediated assembly strategy is able to manipulate the cycling of DNA assemblies between discrete and polymeric states by means of introducing cations and chelating agents sequentially. This property enables the reversible manipulation of the DNA-based nanosystems for at least 4 cycles. The G-quadruplex array embedded in this self-assembled DNA system can become a scaffold for functional molecules, as a number of organic molecules and proteins exhibit specific binding to these G-quadruplex structures. Besides, embedded G-quadruplexes are also considered as functional components of nanoscale electronic materials due to their electron transport through the stacked orientation of the G-quartet. Therefore, this work is an important step towards obtaining reversible, responsive G-quadruplex-induced DNA-based nanomaterials with versatile functionalities which will be highly useful in further electronic, biomedical and drug-delivery applications.


Assuntos
Adesivos , DNA/química , Quadruplex G , Nanoestruturas/química , Cátions/química , Transporte de Elétrons , Eletrônica , Conformação de Ácido Nucleico
17.
Arch Biochem Biophys ; 681: 108265, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31945313

RESUMO

A ubiquitously expressed transcription factor, specificity protein 1 (Sp1), interacts with the amyloid precursor protein (APP) promoter and likely mediates APP expression. Promoter-interaction strengths variably regulate the level of APP expression. Here, we examined the interactions of finger 3 of Sp1 (Sp1-f3) with a DNA fragment containing the APP promoter in different ionic solutions using atomic force microscope (AFM) spectroscopy. Sp1-f3 molecules immobilized on an Si substrate were bound to the APP promoter, which was linked to the AFM tips via covalent bonds. The interactions were strongly influenced by Pb2+, considering that substituting Zn2+ with Pb2+ increased the binding affinity of Sp1 for the APP promoter. The results revealed that the enhanced interaction force facilitated APP expression and that APP overexpression could confer a high-risk for disease incidence. An increased interaction force between Sp1-f3 and the APP promoter in Pb2+ solutions was consistent with a lower binding free energy, as determined by computer-assisted analysis. The impact of Pb2+ on cell morphology and related mechanical properties were also detected by AFM. The overexpression of APP caused by the enhanced interaction force triggered actin reorganization and further resulted in an increased Young's modulus and viscosity. The correlation with single-force measurements revealed that altered cellular activities could result from alternation of Sp1-APP promoter interaction. Our AFM findings offer a new approach in understanding Pb2+ associated neurodegeneration.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Chumbo/toxicidade , Neurônios/metabolismo , Fator de Transcrição Sp1/metabolismo , Linhagem Celular Tumoral , Humanos , Chumbo/metabolismo , Modelos Moleculares , Neurônios/citologia , Regiões Promotoras Genéticas , Transcrição Gênica
18.
ACS Appl Mater Interfaces ; 11(42): 38510-38518, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31556592

RESUMO

We design and synthesize a sequence-defined α-l-threose nucleic acid (TNA) polymer, which is complementary to certain nucleotide sites of target anti-apoptotic proteins, BcL-2 involving in development and progression of tumors. Compared to scramble TNA, anti-BcL-2 TNA significantly suppresses target mRNA and protein expression in cancerous cells and shows antitumor activity in carcinoma xenografts, resulting in suppression of tumor cell growth and induction of tumor cell death. Together with good biocompatibility, very low toxicity, excellent specificity features, and strong binding affinity toward the complementary target RNAs, TNAs become new useful biomaterials and effective alternatives to traditional antisense oligonucleotides including locked nucleic acids, morpholino oligomers, and peptide nucleic acids in antisense therapy. Compared to conventional cancer therapy such as radiotherapy, surgery, and chemotherapy, we anticipate that this TNA-based polymeric system will work effectively in antisense cancer therapy and shortly start to play an important role in practical application.


Assuntos
Inativação Gênica , Oligonucleotídeos Antissenso/química , Oligonucleotídeos/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Tetroses/química , Animais , Proliferação de Células/efeitos dos fármacos , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Microscopia Confocal , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Oligonucleotídeos Antissenso/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/genética , Transplante Heterólogo
19.
Mol Ther Nucleic Acids ; 16: 637-649, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31108320

RESUMO

Targeted transcriptional modulation in the central nervous system (CNS) can be achieved by adeno-associated virus (AAV) delivery of CRISPR activation (CRISPRa) and interference (CRISPRi) transgenes. To enable AAV packaging, we constructed minimal CRISPRa and CRISPRi transgenes by fusing catalytically inactive Staphylococcus aureus Cas9 (dSaCas9) to the transcriptional activator (VP64 and VP160) and repressor (KRAB and SID4X) domains along with truncated regulatory elements. We then evaluated the performance of these constructs in two reporter assays (bioluminescent and fluorescent), five endogenous genes (Camk2a, Mycn, Nrf2, Keap1, and PDGFRA), and two cell lines (neuro-2a [N2a] and U87) by targeting the promoter and/or enhancer regions. To enable systemic delivery of AAVs to the CNS, we have also generated an AAV1-PHP.B by inserting a 7-mer PHP.B peptide on AAV1 capsid. We showed that AAV1-PHP.B can efficiently cross the blood-brain barrier (BBB) and be taken up by the brain tissue upon lateral tail vein injection in mice. Importantly, a single-dose intravenous administration of AAV1-PHP.B expressing CRISPRa was shown to achieve targeted transgene activation in the mouse brain. This proof-of-concept study will contribute to the development of a non-invasive, specific and potent AAV-CRISPR system for correcting transcriptional misregulation in broad brain areas and multiple neuroanatomical structures.

20.
Small ; 15(26): e1805481, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30861628

RESUMO

Photoresponsive DNA nanomaterials represent a new class of remarkable functional materials. By adjusting the irradiation wavelength, light intensity, and exposure time, various photocontrolled DNA-based systems can be reversibly or irreversibly regulated in respect of their size, shape, conformation, movement, and dissociation/association. This Review introduces the most updated progress in the development of photoresponsive DNA-based system and emphasizes their advantages over other stimuli-responsive systems. Their design and mechanisms to trigger the photoresponses are shown and discussed. The potential application of these photon-responsive DNA nanomaterials in biology, biomedicine, materials science, nanophotonic and nanoelectronic are also covered and described. The challenges faced and further directions of the development of photocontrolled DNA-based systems are also highlighted.


Assuntos
Técnicas Biossensoriais/métodos , DNA/química , Nanoestruturas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...