Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34228623

RESUMO

Increasing the local concentration of microbubbles (MBs) within the blood flow plays a crucial role in several medical applications, but there are few imaging modalities available for volumetric tracking of the aggregated MBs in real time. Here we describe a device integrating acoustic vortex tweezers (AVTs) and ultrasound plane-wave imaging (PWI) to achieve the goal of controlling the spatial distribution of MBs in blood vessels and simultaneously monitoring this process using the same probe. Experiments were conducted using a 5-MHz 2-D array ultrasound probe (with three cycles of excitation at an acoustic pressure of 2000 kPa) and 1.2- [Formula: see text]-diameter MBs at a flow rate of 20 mm/s. The AVT waveform was produced by modulating the repetition frequency of the transmitted pulse asymmetrically (4 and 8 kHz at the inflow and outflow ends, respectively). In order to simultaneously capture MBs and carry out imaging with the same probe, the asymmetric AVT pulse signal and the ultrasound-imaging pulse signal were arranged in a staggered series, and the imaging was carried out using plane-wave pulses at nine angles (-7° to 7°) in compounded PWI (volume rate: 200 Hz). Microscopy observations showed that freely suspended MBs could indeed be gathered by the asymmetric AVT in the flow field to form an MBs cluster with a spot size of about [Formula: see text], which could resist the flow to remain at a fixed location for about 22 s. After the asymmetric AVT signal and the ultrasound-imaging pulse signal were turned on for 1 s, the ultrasound 3-D image showed that the signal intensity of the MB clusters increased by 13.1 dB ± 2.9 dB in relation to the background area. These results show that the proposed strategy can be used to accumulate flowing MBs at a desired location and to simultaneously observe this phenomenon. This tool could be used in the future to improve the outcomes of MB-related treatments for various diseases.


Assuntos
Imageamento Tridimensional , Microbolhas , Acústica , Meios de Contraste , Ondas Ultrassônicas , Ultrassonografia
2.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33408129

RESUMO

Spatially concentrating and manipulating biotherapeutic agents within the circulatory system is a longstanding challenge in medical applications due to the high velocity of blood flow, which greatly limits drug leakage and retention of the drug in the targeted region. To circumvent the disadvantages of current methods for systemic drug delivery, we propose tornado-inspired acoustic vortex tweezer (AVT) that generates net forces for noninvasive intravascular trapping of lipid-shelled gaseous microbubbles (MBs). MBs are used in a diverse range of medical applications, including as ultrasound contrast agents, for permeabilizing vessels, and as drug/gene carriers. We demonstrate that AVT can be used to successfully trap MBs and increase their local concentration in both static and flow conditions. Furthermore, MBs signals within mouse capillaries could be locally improved 1.7-fold and the location of trapped MBs could still be manipulated during the initiation of AVT. The proposed AVT technique is a compact, easy-to-use, and biocompatible method that enables systemic drug administration with extremely low doses.

3.
Appl Opt ; 54(28): E102-8, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26479638

RESUMO

An optical design for a new white LED motorcycle headlamp is presented. The motorcycle headlamp designed in this study comprises a white LED module, an elliptical reflector, a parabolic reflector, and a toric lens. The light emitted from the white LED module is located at the first focal point of the elliptical reflector and focuses on the second focal point. The second focal point of the elliptical reflector and the focal point of the parabolic reflector are confocal. We use nonsequential rays to improve the optical efficiency of the compound reflectors. The toric spherical lens allows the device to meet the Economic Commission of Europe, regulation no. 113 (ECE R113). Furthermore, good uniformity is obtained by using aspherical surface optimization of the same toric lens. The reflectivity of the reflector is 95%, and the transmittance of each lens surface is 98%. The average deviation of the high beam is 14.17%, and the optical efficiency is 66.45%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...