Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 12: 736390, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764980

RESUMO

Background: Single-nucleotide polymorphism (SNP) arrays are an ideal technology for genotyping genetic variants in mass screening. However, using SNP arrays to detect rare variants [with a minor allele frequency (MAF) of <1%] is still a challenge because of noise signals and batch effects. An approach that improves the genotyping quality is needed for clinical applications. Methods: We developed a quality-control procedure for rare variants which integrates different algorithms, filters, and experiments to increase the accuracy of variant calling. Using data from the TWB 2.0 custom Axiom array, we adopted an advanced normalization adjustment to prevent false calls caused by splitting the cluster and a rare het adjustment which decreases false calls in rare variants. The concordance of allelic frequencies from array data was compared to those from sequencing datasets of Taiwanese. Finally, genotyping results were used to detect familial hypercholesterolemia (FH), thrombophilia (TH), and maturity-onset diabetes of the young (MODY) to assess the performance in disease screening. All heterozygous calls were verified by Sanger sequencing or qPCR. The positive predictive value (PPV) of each step was estimated to evaluate the performance of our procedure. Results: We analyzed SNP array data from 43,433 individuals, which interrogated 267,247 rare variants. The advanced normalization and rare het adjustment methods adjusted genotyping calling of 168,134 variants (96.49%). We further removed 3916 probesets which were discordant in MAFs between the SNP array and sequencing data. The PPV for detecting pathogenic variants with 0.01%10,000 are available. The results demonstrated our procedure could perform correct genotype calling of rare variants. It provides a solution of pathogenic variant detection through SNP array. The approach brings tremendous promise for implementing precision medicine in medical practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...